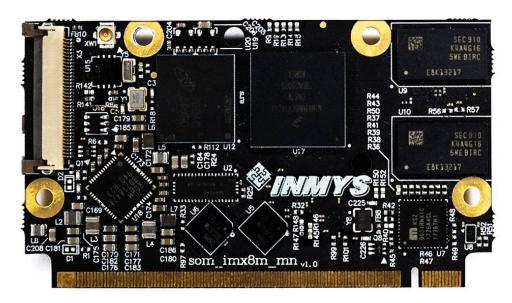


Содержание

IMS-uQ7-IMX8NANO v1 ds-ru	
Краткое описание возможностей	4
Структурная схема модуля	5
Дерево питания	6
Механические характеристики	7
Основные аппаратные компоненты	8
Расположение компонентов на плате	8
Вид сверху	8
Вид снизу	9
Процессор	10
Внешние интерфейсы	11
WIFI	11
UART	11
I2C	11
SPI	12
CAN	13
Аудио AC97 (SAI)	13
LVDS (MIPI DSI -> LVDS)	15
eDP (MIPI DSI -> eDP)	18
LPC и GPIO	19
USB	20
PCIe	21
Gigabit Ethernet	24
SDIO	26
MIPI CSI2	27
Внутренние и отладочные интерфейсы	29
I2C	29
Отладочный UART	30
RESET	31
CLK	32

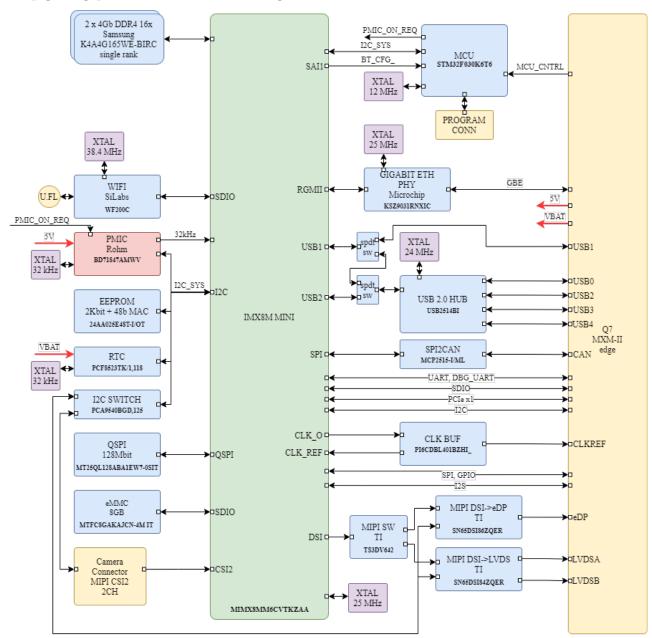


NMS-uQ7-IMX8NANO v1 ds-ru

Процессорный модуль NMS-Q7-IMX8M-NANO выполнен на основе ARM-процессора производства NXP i.MX 8M nano.

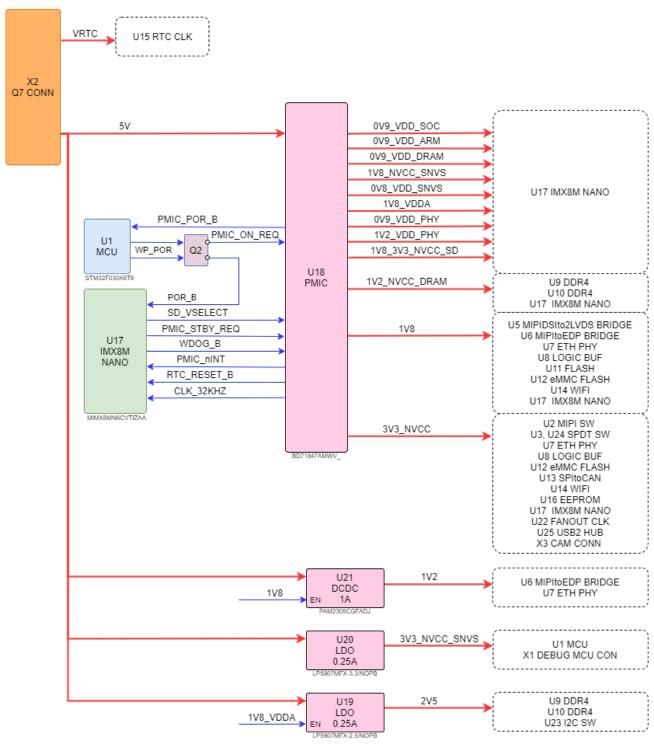
http://wiki.inmys.ru/ 3 Printed on 2025/11/10 04:06

Краткое описание возможностей


Основные технические характеристики

Основные технические	ч					
Форм-фактор	Qseven					
	Серия: i.MX 8M nano (MIMX8MN6CVTIZAA)					
Процессор	Ядра: 1 x ARM Cortex A53@ 1.4 ГГц, 1 x ARM Cortex M7@ 400 МГц					
	Память для кэша команд L1 / данных: 32 кБ, 32 кБ					
	Память для кэша команд L2 / данных: 512 кБ					
	Максимальная тактовая частота: 1.4 ГГц					
03У	Двухранговая DDR4 2x 2 Гбита (K4A4G165WE) NOR 128 Мбит (MT25QU128ABA1EW7)					
Флэш-память	NOR 128 Мбит (MT25QU128ABA1EW7)					
Флэш-намять	еММС 8 ГБайт (MTFC8GAKAJCN)					
эсппзу	2 Кбита, доступ по I2C, уникальный идентификатор 48 бит (24AA025)					
ИС управления питанием	PMIC (BD71847)					
	RTC (PCF8523TK)					
	WIFI (WF200C)					
	Ethernet PHY (KSZ9031)					
	MOCT MIPI® DSI→2LVDS (SN65DSI84)					
Прочие компоненты	мост MIPI® DSI→eDP (SN65DSI86)					
	Микрокотроллер (STM32F0)					
	Буфер синхронизации PCIe (PI6CDBL401)					
	USB 2.0 xa6 (USB2514BI)					
	САN контроллер (MCP2515-I/ML)					
	1x PCle					
	1x USB 2.0 OTG					
	4x USB 2.0 (USB 2.0 HUB)					
	1х Гигабит Ethernet (PHY)					
	1x SDIO					
	1x UART + 1x отладочный UART					
Интерфейсы	1x I2C					
	1x I2S					
	1x SPI					
	1x CAN (SPI→CAN)					
	2x LVDS (MIPI DSI → LVDS 2 канала)					
	1x eDP (MIPI DSI → eDP)					
	GPIO					
Напряжение питания						
Потребление	TBD					
Габаритные размеры	70×40 мм					

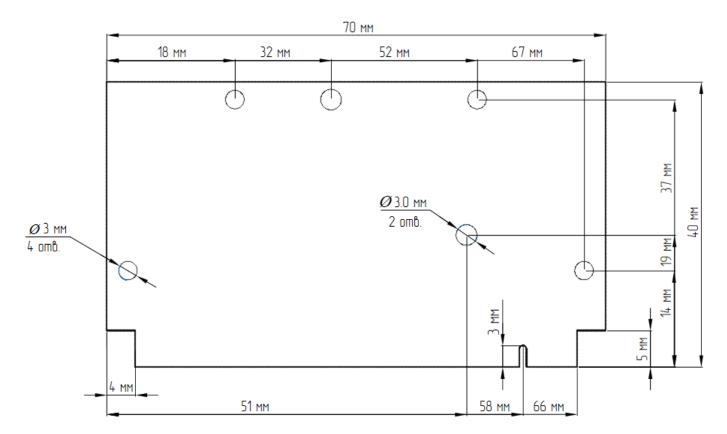
Структурная схема модуля


Структурная схема модуля

http://wiki.inmys.ru/ 5 Printed on 2025/11/10 04:06

Дерево питания

Дерево питания



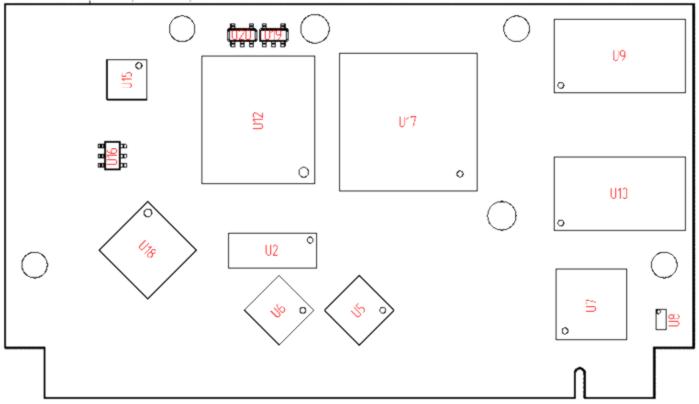
Механические характеристики

Размер платы : 70 х 40 мм.

Печатная плата состоит из 10 слоев, часть из которых являются заземляющими для подавления помех.

Габаритные размеры

http://wiki.inmys.ru/ 7 Printed on 2025/11/10 04:06

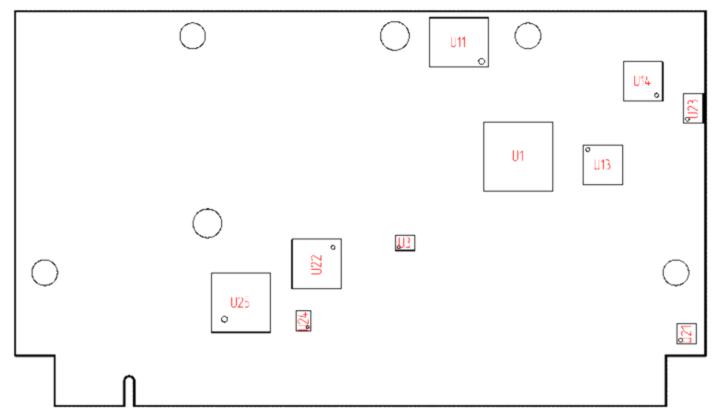


Основные аппаратные компоненты

Расположение компонентов на плате

Вид сверху

Расположение компонентов на плате. Вид сверху


Наименование компонентов на плате на верхней стороне

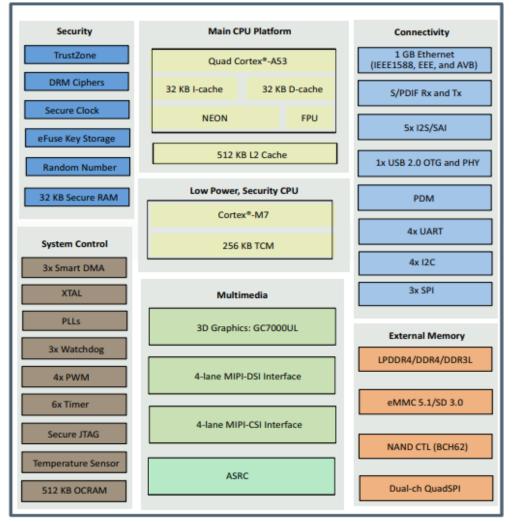
Позиционное обозначение	P/N	Описание
U2	TS3DV642A0RUA_	Двунаправленный MUX/DEMUX 1-в-2
U5	SN65DSI84ZQER	MIPIDSI→2LVDS мост
U6	SN65DSI86ZQER	MIPIDSI→eDP мост
U7	KSZ9031RNXI_	Ethernet PHY
U8	74AVCH2T45GT,115	Двунаправленный буфер
U9	K4A4G165WE-BIRC	Память DDR4
U10	K4A4G165WE-BIRC	Память DDR4
U12	MTFC8GAKAJCN-4M IT_	Память е.ММС
U15	PCF8523TK/1,118	Часы реального времени (RTC)
U16	24AA025E48T-I/OT	Память EEPROM
U17	MIMX8MN6CVTIZAA	Процессор i.MX 8M nano
U18	BD71847AMWV_	ИС управления питанием (PMIC)
U19	LP5907MFX-2.5/NOPB	LDO 5B→2.5B
U20	LP5907MFX-3.3/NOPB	LDO 5B→3.3B

Вид снизу

Расположение компонентов на плате. Вид сверху

Наименование компонентов на плате на нижней стороне

Позиционное обозначение	P/N	Описание
U1	STM32F030K6T6	Микроконтроллер
U3	TMUX136(M)RSE_	2:1 SPDT аналоговый переключатель
U11	MT25QU128ABA1EW7-0SIT_	QSPI NOR Flash 128 Мбит
U13	MCP2515-I/ML	CAN контроллер
U14	WF200C	Сетевой сопроцессор (NCP) Wi-Fi
U21	PAM2305CGFADJ	DCDC преобразователь 5B→1.2
U22	PI6CDBL401BZHI_	Буфер синхронизации PCIe
U23	PCA9540BGD,125	Двухканальный мультиплексор I2C шины
U24	TMUX136(M)RSE_	2:1 SPDT аналоговый переключатель
U25	USB2514BI-AEZG	USB 2.0 xa6


http://wiki.inmys.ru/ 9 Printed on 2025/11/10 04:06

Процессор

На рисунке 6 показаны функциональные модули в процессорной системе i.MX 8M NANO.

Функциональные модули i.MX 8M NANO

Внешние интерфейсы wifi

Start drawing by clicking here

Wi-Fi связи

UART

На плате NMS-Q7-IMX8M-NANO доступен один интерфейс UART (UART2).

Start drawing by clicking here

Интерфейс UART

Сигналы UART разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
UARTO_TX	171	выход	3.3	Линия последовательной передачи данных.	U17.E15
UARTO_RX	177	вход	3.3 PU 10 кОм	Линия последовательного приема данных.	U17.F15
UARTO_RTS#	172	выход	3.3	Сигнал квитирования, запрос на отправку данных.	U17.F18
UARTO_CTS#	178	вход	3.3	Сигнал квитирования, разрешение отправки данных.	U17.F19

где PU - подтяжка к питанию, PD -подтяжка к земле.

I2C

На плате NMS-Q7-IMX8M-NANO доступно два интерфейса I2C. Эта двухпроводная двунаправленная последовательная шина обеспечивает простой и эффективный метод обмена данными, минимизируя взаимосвязь между устройствами.

http://wiki.inmys.ru/ 11 Printed on 2025/11/10 04:06

Start drawing by clicking here

I2C интерфейс

Сигналы интерфейса I2C разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
I2C1_SMB_SCL	60	вход/выход	3.3 PU 4.7 кОм	Линия синхронизации SMBus.	U17.E10
I2C1_SMB_SDA	62	вход/выход	3.3 PU 4.7 кОм	Линия передачи данных SMBus.	U17.F10
SMB_ALERT#	64	вход/выход	3.3	Сигнал оповещение SMBus.	Не используется.
I2C0_SCL	66	вход/выход	3.3 PU 4.7 кОм	Тактовый сигнал I2C.	U17.D10
I2C0_SDA	68	вход/выход	3.3 PU 4.7 кОм	Шина данных І2С.	U17.D9

где PU - подтяжка к питанию, PD -подтяжка к земле.

SPI

На плате NMS-Q7-IMX8M-NANO реализован один интерфейс SPI (может работать как в режиме ведущего, так и в режиме ведомого) .

Интерфейс SPI

Сигналы интерфейса SPI разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
SPI_MOSI	199	выход	3.3	Выход ведущего, вход ведомого (модуль QSeven \rightarrow материнская плата).	U17.B7
SPI_MISO	201	вход	3.3	Вход ведущего, выход ведомого. (материнская плата → модуль QSeven).	U17.A7
SPI_SCK	203	выход	3.3	Последовательный тактовый сигнал SPI.	U17.D6
SPI_CS0#	200	выход	3.3	Первичный выбор ведомого устройства на шине SPI.	U17.B6
SPI_CS1#	202	выход	3.3	Вторичный выбор ведомого устройства на шине SPI.	Не используется.

CAN

На плате NMS-Q7-IMX8M-NANO доступен один CAN интерфейс.

Интерфейс CAN

Сигналы интерфейса CAN разъема Q7

Имя вывода	Номер вывода		Стандартное напряжение(В)	Функциональное назначение	Подключение
CAN0_TX	129	выход	3.3	Передача данных по шине CAN, канал 0.	U13.19
CANO_RX	130	вход	3.3	Прием данных по шине CAN, канал 0.	U13.20

Аудио AC97 (SAI)

На плате NMS-Q7-IMX8M-NANO доступен один полнодуплексный последовательный аудио интерфейс с синхронизацией кадров.

http://wiki.inmys.ru/ 13 Printed on 2025/11/10 04:06

Start drawing by clicking here

Аудио интерфейс

Сигналы аудио интерфейса разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Подключение
HDA_SYNC	59	выход	3.3	Синхронизация шины HDA.	U17.AD23
HDA_RST#	61	выход	3.3	Сброс кодека.	U17.AD19
HDA_BCLK	63	выход	3.3	Битовый тактовый сигнал HDA.	U17.AD22
HDA_SDO	67	выход	3.3	Выходной сигнал данных HDA.	U17.AC22
HDA_SDI	65	вход	3.3	Входной сигнал данных HDA.	U17.AC24

LVDS (MIPI DSI -> LVDS)

На плате NMS-Q7-IMX8M-NANO доступно два канала LVDS. С помощью моста MIPIDSI \rightarrow 2LVDS происходит декодировка пакетов MIPI DSI и преобразование потока отформатированных видеоданных в LVDS.

Start drawing by clicking here

Интерфейс LVDS

Сигналы интерфейса LVDS разъема Q7

Имя вывода		Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
LVDS_A0+	99	DL IVO E		#0, дифференциальная	U5.C8
LVDS_A0-	101	выход			U5.C9
LVDS_A1+	103	DI IVO II		Основной канал LVDS #1, дифференциальная	U5.D8
LVDS_A1-	105	выход		пара.	U5.D9
LVDS_A2+	107	DI IVO II		Основной канал LVDS	U5.E8
LVDS_A2-	109	выход		#2, дифференциальная пара.	U5.E9
LVDS_A3+	113	рыуол		Основной канал LVDS #3, дифференциальная	U5.G8
LVDS_A3-	115	выход		пара.	U5.G9
LVDS_A_CLK+	119	ВЫХОП		Основной канал LVDS, тактирование,	U5.F8
LVDS_A_CLK-	121	выход		дифференциальная пара.	U5.F9
LVDS_B0+	100	выход		Вторичный канал LVDS #0, дифференциальная пара.	U5.B3
LVDS_B0-	102	выход			U5.A3
LVDS_B1+	104	выход		Вторичный канал LVDS #1, дифференциальная	U5.B4
LVDS_B1-	106	выход		пара.	U5.A4
LVDS_B2+	108	ВПХОП		Вторичный канал LVDS	U5.B5
LVDS_B2-	110	выход		#2, дифференциальная пара.	U5.A5
LVDS_B3+	114	рыхол		Вторичный канал LVDS #3, дифференциальная	U5.B7
LVDS_B3-	116	выход		пара.	U5.A7
LVDS_B_CLK+	120	выход		тактирование,	U5.B6
LVDS_B_CLK-	122	выход		дифференциальная пара.	U5.A6

http://wiki.inmys.ru/ 15 Printed on 2025/11/10 04:06

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
LVDS_PPEN	111	выход	3.3	Сигнал включения питания панели. Может использоваться для включения/выключения подключенного дисплея LVDS.	U17.AB15
LVDS_BLEN	112	выход	3.3 PU 10 кОм	Сигнал включения подсветки панели. Может использоваться для включения/выключения подсветки подключенного дисплея LVDS.	U17.AD18
LVDS_BLT_CTRL/ GP_PWM_OUT0	123	выход	3.3	Этот сигнал можно использовать для регулировки яркости подсветки панели на дисплеях, поддерживающих правила широтно-импульсной модуляции (ШИМ). Если управление яркостью подсветки через ШИМ не требуется, этот сигнал можно использовать в качестве выхода ШИМ общего назначения.	U17.AG9
LVDS_BLC_DAT	126	вход/выход	3.3	Управляющий сигнал данных для внешней микросхемы SSC.	U17.AD13
LVDS_BLC_CLK	128	вход/выход	3.3 PU 10 кОм	Управляющий тактовый сигнал для внешней SSC.	U17.AC13
LVDS_DID_DAT	125	вход/выход	3.3 PU 1 кОм	DisplayID DDC используемая для обнаружения плоских панелей LVDS. Если основная функциональность не используется, ее можно использовать как линию данных шины I2C общего назначения (GP2_I2C_DAT).	U17.E13

Имя вывода		Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
LVDS_DID_CLK	127	вход/выход	3.3 PU 1 кОм	Линия тактирования для обнаружения плоских панелей LVDS. Если основная функциональность не используется, ее можно использовать как линию данных шины I2C общего назначения (GP2_I2C_CLK)	U17.D13

где PU - подтяжка к питанию, PD -подтяжка к земле.

http://wiki.inmys.ru/ 17 Printed on 2025/11/10 04:06

eDP (MIPI DSI -> eDP)

На плате NMS-Q7-IMX8M-NANO доступен один канал eDP.

Интерфейс eDP

Сигналы DP интерфейса разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
DP_LANE3+	131	выход		DP порт #3,	U6.B8
DP_LANE3-	133	выход		дифференциальная пара.	U6.B9
DP_LANE2+	143	выход		DP порт #2,	U6.F8
DP_LANE2-	145	выход		дифференциальная пара.	U6.F9
DP_LANE1+	137	выход		DP порт #1,	U6.E8
DP_LANE1-	139	выход		дифференциальная пара.	U6.E9
DP_LANE0+	149	выход		DP порт #0,	U6.C8
DP_LANE0-	151	выход		дифференциальная пара.	U6.C9
DP_AUX+	138	вход/выход		DP вспомогательный канал используется для настройки и	U6.H8
DP_AUX+	140	вход/выход		управления, дифференциальная пара.	U6.H9
DP_HPD#	154	вход		DP сигнал обнаружения горячей замены (Hot Plug Detect)	U6.J8

где PU - подтяжка к питанию, PD -подтяжка к земле.

LPC u GPIO

На плате NMS-Q7-IMX8M-NANO доступно восемь сигналов, которые можно использовать для реализации интерфейса LPC или в качестве входов/выходов общего назначения (GPIO).

Когда выводы Q7 модуля сконфигурированы для использования интерфейса LPC, будут доступны следующие сигналы:

Сигналы LPC/GPIO разъема Q7

Имя	Номер		Стандартное напряжение(В)		Функциональное назначение 2	Подключение
вывода LPC_AD[0÷3]		вывода вход/выход		Шина данных LPC.	Входы/выходы общего назначения GPIO0-GPIO3	U17.AC6 U17.AG8 U17.AG7 U17.AF6
LPC_CLK	189	выход	3.3	Входной тактовый сигнал LPC.	Вход/выход общего назначения GPIO4	U17.AF7
LPC_FRAME#	190	выход	3.3	Frame индикатор LPC. Этот сигнал используется для оповещения о начале нового цикла передачи или об окончании существующих циклов из-за условия прерывания или истечения времени ожидания.	Вход/выход общего назначения GPIO5	U17.AC13
LPC_LDRQ#	192	вход	3.3	DMA запрос LPC. Этот сигнал используется только периферийными устройствами, требующими прямого доступа к памяти или управления шиной.	Вход/выход общего назначения GPIO7	U17.AG6
SERIRQ	191	вход/выход	3.3	Запрос SerIRQ LPC. Этот сигнал используется только периферийными устройствами, требующими поддержки прерывания.	Вход/выход общего назначения GPIO6.	U17.AD6

Когда выводы модуля Q7 сконфигурированы как GPIO, все предыдущие сигналы недоступны, и соответствующие контакты на разъеме Qseven являются двунаправленными входами/выходами общего назначения с электрическим уровнем +3.3

http://wiki.inmys.ru/ 19 Printed on 2025/11/10 04:06

В.

USB

На плате NMS-Q7-IMX8M-NANO доступно пять интерфейсов USB:

- 1x USB 2.0 OTG (порт 1);
- 4x USB 2.0 (USB 2.0 HUB).

Start drawing by clicking here

Блок-схема USB

USB сигналы разъема Q7

Имя вывода		Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
USB_P0+	96			USB порт #0,	U25.2
USB_P0-	94	вход/выход		дифференциальная пара.	U25.1
USB_P1+	95			USB порт #1,	U24.8, U17.B22
USB_P1-	93	вход/выход		дифференциальная пара.	U24.7, U17.A22
USB_P2+	90			USB порт #2,	U25.4
USB_P2-	88	вход/выход		дифференциальная пара.	U25.3
USB_P3+	89	DV0 5/DL IV0 5		USB порт #3,	U25.7
USB_P3-	87	вход/выход		дифференциальная пара.	U25.6
USB_P4+/USB_SSRX2+	84	вход/выход		USB SuperSpeed порт #2,	U25.9
USB_P4-/USB_SSRX2-	82	вход/выход		дифференциальная пара, прием.	U25.8
USB_P5+/USB_SSTX2+	83	DI IVO E		USB SuperSpeed порт #2, дифференциальная пара, передача.	Не используется.
USB_P5-/USB_SSTX2-	81	выход			Не используется.
USB_P6+/USB_SSRX0+	78			USB SuperSpeed порт #0,	Не используется.
USB_P6-/USB_SSRX0-	76	вход/выход		дифференциальная пара, прием.	
USB_P7+/USB_SSTX0+	77			USB SuperSpeed порт #0,	Не используется.
USB_P7-/USB_SSTX0-	75	вход/выход		дифференциальная пара, передача.	-

Имя вывода		Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
USB_SSRX1+	132	вход		USB SuperSpeed порт #1,	Не используется.
USB_SSRX1-	134	БЛОД		дифференциальная пара, прием.	Не используется.
USB_SSTX1+	144	выход		USB SuperSpeed порт #1,	Не используется.
USB_SSTX1-	146	БЫХОД		дифференциальная пара, передача.	Не используется.
USB_0_1_OC#	86	выход	3.3 PU 10 кОм	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#0 и #1.	U17.AD10
USB_2_3_OC#	85	выход	3.3 PU 10 кОм	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#2 и #3.	U17.AC10
USB_4_5_OC#	80	выход	3.3 PU 10 кОм	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#4 и #5.	U17.AB10
USB_6_7_OC#	79	вход	3.3 PU 10 кОм	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#6 и #7.	U17.AD9
USB_VBUS	91	вход	3.3	Входное питание, режим USB- клиента	U17.F22
USB_ID	92	вход	3.3	USB ID.	U17.D22
USB_OTG_PEN	56	выход	3.3	Включение питания для порта USB #1.	U17.AC19

где PU - подтяжка к питанию, PD -подтяжка к земле.

PCIe

На плате NMS-Q7-IMX8M-NANO доступен один канал PCle.

Start drawing by clicking here

Блок-схема PCle

PCle сигналы разъема Q7

Имя вывода	Номер	Тип	Стандартное	Функциональное	Подключение
ини вывода	вывода	вывода	напряжение(В)	назначение	подключение
PCIE0_TX+	179	выход		Линия PCI Express #0, дифференциальная пара, передача,	U17.B20
PCIE0_TX-	181	выход		разделительный конденсатор 0,1 мкФ.	U17.A20
PCIE0_RX+	180			Линия PCI Express #0,	U17.B19
PCIE0_RX-	182	вход		дифференциальная пара, прием.	U17.A19
PCIE1_TX+	173	DI IVO E		Линия PCI Express #1,	Не
PCIE1_TX-	175	выход		дифференциальная пара, передача.	используется.
PCIE1_RX+	174	DV0 F		Линия PCI Express #1,	Не используется.
PCIE1_RX-	176	вход		дифференциальная пара, прием.	
PCIE2_TX+	167	DI IVO E		Линия PCI Express #2, дифференциальная	Не используется.
PCIE2_TX-	169	выход		пара, передача.	
PCIE2_RX+	168	руоп		Линия PCI Express #2, дифференциальная	Не используется.
PCIE2_RX-	170	вход		пара, прием.	
PCIE3_TX+	161	выход		Линия PCI Express #3, дифференциальная	Не
PCIE3_TX-	163	выход		пара, передача.	используется.
PCIE3_RX+	162	вход		Линия PCI Express #3, дифференциальная	Не
PCIE3_RX-	164	ВХОД		пара, прием.	используется.
PCIE_CLK_REF+	155	руол		Опорный тактовый сигнал PCI Express для линий с 0 по 3,	U22.22 через 0 Ом (R139)
PCIE_CLK_REF-	157	вход		дифференциальная пара.	U22.23 через 0 Ом (R140)
PCIE_WAKE#	156	вход	3.3 PU 10 кОм	Сигнал пробуждения системы модуля QSeven.	U17.AF10
PCIE_RST#	158	выход	3.3	Сигнал сброса для устройств на материнской плате.	U17.AD15

где PU - подтяжка к питанию, PD -подтяжка к земле.

Gigabit Ethernet

На плате NMS-Q7-IMX8M-NANO доступен один канал Гигабит Ethernet.

Гигабит Ethernet

Сигналы Гигабит Ethernet разъема Q7

Имя вывода	_	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
GBE_MDI0+	12	вход/выход		Дифференциальная пара ввода/вывода #0.	U7.2
GBE_MDI0-	10	вход/выход		Эта пара сигналов используется для всех режимов.	U7.3
GBE_MDI1+	11	вход/выход		Дифференциальная пара ввода/вывода #1. Эта пара	U7.5
GBE_MDI1-	9	вход/выход		сигналов используется для всех режимов.	U7.6
GBE_MDI2+	6	DV0 5 /D1 1V0 5		Дифференциальная пара ввода/вывода #2. Эта пара сигналов	U7.7
GBE_MDI2-	4	вход/выход		используется только для режима 1000 Мбит/с (Гигабит Ethernet).	U7.8
GBE_MDI3+	5			Дифференциальная пара ввода/вывода #3. Эта пара сигналов	U7.10
GBE_MDI3-	3	вход/выход		используется только для режима 1000 Мбит/с (Гигабит Ethernet).	U7.11
GBE_ACT#	14	выход	3.3	Индикатор активности контроллера Ethernet.	U8.7

Имя вывода	•	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
GBE_LINK#	13	выход	3.3	Индикатор соединения контроллера Ethernet.	U8.6 (через резистор 0 Ом)
GBE_LINK100#	7	выход	3.3	Индикатор соединения контроллера Ethernet 100 Мбит/с.	3V3_NVCC
GBE_LINK1000#	8	выход	3.3	Индикатор соединения контроллера Ethernet 1 Гбит/с.	U8.6 (через резистор 0 Ом)
GBE_CTREF	15	выход		Опорное напряжение для центрального отвода трансформатора канала 0.	Не используется.

SDIO

На плате NMS-Q7-IMX8M-NANO доступен один интерфейс SDIO.

Интерфейс SDIO

Сигналы интерфейса SDIO разъема Q7

Имя вывода		Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
SDIO_CD#	43	вход/выход	3.3 PU 10 кОм	Сигнал обнаружения карты, который сигнализирует о наличии карты SDIO.	U17.AA26
SDIO_CLK	42	выход	3.3	Тактовый сигнал.	U17.W23
SDIO_CMD	45	Вход/выход	3.3	Команда/Ответ. Этот сигнал используется	
SDIO_LED	44	выход	3.3	Выходной сигнал LED.	Не используется.
SDIO_WP	46	вход/выход	3.3	Защита от записи.	U17.AA27
SDIO_PWR#	47	выход	3.3	Включение питания (используется для управления светодиодом при передаче данных по шине).	U17.AB26
SDIO_DAT[0÷7]	48-51	вход/выход	Шина данных SDIO. Сигнал SDIO_DATO используется для всех режимов связ		SDIO_DAT[0÷3]: U17.AB24 U17.AB23 U17.V23 U17.V24

MIPI CS12

На плате NMS-Q7-IMX8M-NANO доступен один интерфейс MIPI CSI, который обеспечивает передачу данных изображения непосредственно от модуля камеры или сенсора на процессор.

Start drawing by clicking here

Интерфейс MIPI CSI

Сигналы MIPI CSI интерфейса разъема X3

Имя вывода	•	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
CAM_PWR	1		3.3	Питание	
CAM_PWR	2		3.3	Питание	
CAM0_CSI_D0+	3	выход		Линия CSI #0	U17.B14
CAM0_CSI_D0-	4	выход		канал 0	U17.A14
GND	5			Питание	
CAM0_CSI_D1+	6	выход		Линия CSI #1	U17.B15
CAM0_CSI_D1-	7	выход		канал 0	U17.A17
GND	8			Питание	
CAM0_CSI_D2+	9	выход		Линия CSI #2	U17.B17
CAM0_CSI_D2-	10	выход		канал 0	U17.A17
CAM0_RST#	11	вход	1.8	Сигнал сброса канал 0	U17.AF12
CAM0_CSI_D3+	12	выход		Линия CSI #3	U17.B18
CAM0_CSI_D3-	13	выход		канал 0	U17.A18
GND	14			Питание	
CAM0_CSI_CLK+	15	выход		Тактирование	U17.B16
CAM0_CSI_CLK-	16	выход		канал 0	U17.A16
GND	17			Питание	
CAM0_I2C_CLK	18	вход	1.8 PU 2.2 кОм	Тактовый сигнал I2C канал 0.	U23.5
CAM0_I2C_DAT	19	вход/выход	1.8 PU 2.2 кОм	Шина данных I2C канал 0.	U23.4
CAM0_ENA#	20	вход	1.8	Сигнал разрешения канал 0	U17.AF14
MCLK	21	вход		Синхронизация камеры, программируемая частота	U17.AC9

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Подключение
CAM1_ENA#	22	вход	1.8	Сигнал разрешения канал 1	Не используется.
CAM1_I2C_CLK	23	выход	1.8	Тактовый сигнал I2C канал 1.	Не используется.
CAM1_I2C_DAT	24	выход	1.8	Шина данных I2C канал 1.	Не используется.
GND	25			Питание	
CAM1_CSI_CLK+	26	выход		Тактирование	Не используется.
CAM1_CSI_CLK-	27	выход		канал 1	Не используется.
GND	28			Питание	
CAM1_CSI_D0+	29	выход		Линия CSI #0	Не используется.
CAM1_CSI_D0-	30	выход		канал 1	Не используется.
CAM1_RST#	31	вход	1.8	Сигнал сброса канал 1	Не используется.
CAM1_CSI_D1+	32	выход		Линия CSI #1	Не используется.
CAM1_CSI_D1-	33	выход		канал 1	Не используется.
GND	34			Питание	
CAM0_GPIO	35	вход/выход	1.8	Сигнал общего назначения канал 0	U17.AF11
CAM1_GPIO	36	вход/выход	1.8	Сигнал общего назначения канал 1	Не используется.

Внутренние и отладочные интерфейсы 12C

На плате NMS-Q7-IMX8M-NANO доступен один интерфейс I2C для взаимосвязи процессора и периферийных устройств на плате.

I2C1 интерфейс

Сопоставление адресов I2C

Устройство	Адрес
Буфер синхронизации PCle	0x1101011
Часы реального времени (RTC)	0x1101000
ЭСППЗУ (ЕЕРROM)	0x1010000
ИС управления питанием (РМІС)	0x1001010
Двухканальный мультиплексор I2C шины	0x1110000
MIPIDSI→2LVDS мост	0x0101100
MIPIDSI→eDP мост	0x0101101

Сигналы интерфейса I2C процессора imx8m nano

Имя вывода	Номер вывода	Тип вывода		Функциональное назначение
I2C1_CLK	E9	вход/выход	3.3 PU 4.7 кОм	Тактовый сигнал I2C.
I2C1_SDA	F9	вход/выход	3.3 PU 4.7 кОм	Шина данных I2C.

где PU - подтяжка к питанию, PD -подтяжка к земле.

http://wiki.inmys.ru/ 29 Printed on 2025/11/10 04:06

Отладочный UART

На плате NMS-Q7-IMX8M-NANO доступен один отладочный интерфейс UART (UART1).

Отладочный интерфейс UART

Сигналы отладочного UART разъема Q7

Имя вывода		Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Подключение
UART_DEBUG_TX	209	выход	3.3	Линия последовательной передачи данных UART_TX для отладки.	U17.E14
UART_DEBUG_RX	208	вход	3.3 PU 10 кОм	Линия последовательного приема данных UART_RX для отладки.	U17.F13

где PU - подтяжка к питанию, PD -подтяжка к земле.

RESET

Сигналы сброса от процессора

Сигналы сброса от процессора imx8m nano

Имя вывода	Номер вывода	Стандартное напряжение(В)	Название цепи	Подключение
GPIO1_IO15	AB9	1.8	ETH_PHY_RESETN	U7.42
GPIO1_IO05	AF12	1.8	CAM0_RST#	X3.11
RTC_RESET_B	F24	1.8 PU 100 кОм	RTC_RESET_B	U18.3
SAI2_RXC	AB22	3.3 PU 4.7 кОм	CAN_RSTB	U13.17
RESET#	R1	1.8 PD 10 кОм	RESET_n	U19.P1, U10.P1
SD1_STROBE	R24	3.3 PU 2.2 кОм	RESET_HUSB	U25.26
SAI5_MCLK	AD15	3.3	PCIE_MISC_PERST#	X2.158
SD1_RESET_B	R23	1.8 PU 10 кОм	WIFI_RSTn	U14.15
JTAG_TRST_B	C27	3.3	JTAG_TRST_B	U1.13
SD2_RESET_B	AB26	3.3	SDIO_PWR#	X2.47

где PU - подтяжка к питанию, PD -подтяжка к земле.

CLK

Тактовые сигналы imx8m nano

Тактовые сигналы процессора imx8m nano

Имя вывода	Номер вывода	Стандартное напряжение(B)	Название цепи	Подключение
GPIO1_IO00	AG14		LP_CLK	U14.23
GPIO1_IO14	AC9		MCLK	X3.21
RTC_XTALI	A26		CLK_32KHZ	U18.29
PCIE_CLK_N	A21		PCIE1_REFCLK_N	U22.28
PCIE_CLK_P	B21		PCIE1_REFCLK_P	U22.27
CLKOUT1	H26		CLK100_BUFIN_P	U22.5
CLKOUT2	J26		CLK100_BUFIN_N	U22.6

Тактовые сигналы разъема Q7

имя вывода	Номер вывода	Стандартное напряжение(В)	Название цепи	Подключение
PCIE_REF_CLK_P	155		PCIE_REF_CLK_P	U22.22 (через 0 Ом)
PCIE_REF_CLK_N	157		PCIE_REF_CLK_N	U22.23 (через 0 Ом)

http://wiki.inmys.ru/ 33 Printed on 2025/11/10 04:06