

Содержание

IMS-Q7-EVM V1.1 ds-ru	3
Вступление	3
Технические характеристики	3
Электрические характеристики	4
Блок-схема	
Дерево питания	6
Механические характеристики	7
Соединители	8
Вступление	8
Расположение разъемов	8
Вид сверху	8
Вид снизу	9
Описание разъемов	10
Разъем питания	10
Разъем Qseven®	10
Сигналы интерфейса PCI Express	10
Сигналы интерфейса UART	11
Сигналы интерфейса Гигабит Ethernet	12
Сигналы интерфейса SATA	
Сигналы интерфейса SDI/O	
Сигналы интерфейса USB	14
Сигналы интерфейса CAN	15
Сигналы интерфейса SPI	
Сигналы LVDS/eDP интерфейсов	
Сигналы аудио интерфейса	
Сигналы HDMI/DP интерфейсов	
Сигналы интерфейса LPC и GPIO	
Сигналы I2C интерфейса	
Сигналы управления питанием	
Реализация управления вентилятором	
Сигналы управления системой защиты от перегрева	
Разные сигналы	
Производственные сигналы	
Сигналы заземления (GND)	
Сигналы питания	
Неподключенные и зарезервированные сигналы	
SPI	
I2C	
LPC	
HDMI	
LVDS	
LVDS питание и управление	
USB	
USB порт 0	
USB порт 1	
USB порт 2	
USB порт 3	32

	Отладочная консоль (мост USB-UART)	32
	Последовательные порты	33
	Перемычки для выбора RS-232 \ RS485 \ RS422	33
	RS-232	34
	RS-485/RS-422	34
	Опциональные перемычки RS-485 / RS422	34
	CAN	35
	САN порт 0	35
	САN порт 1	36
	Опции перемычки	36
	Аудио	37
	Перемычки для выбора линии и опций	38
	Ethernet	38
	Ethernet порт 0	38
	Ethernet порт 1	38
	M.2 PCIe	39
	M.2 SATA	
	SD карта	41
	Специальный разъем	42
	Разъем вентилятора	42
	Разъемы отладки и программирования	42
	JTAG/UART	
	Программирование и отладка микроконтроллера	43
	Джамперы и Кнопки	
	Джамперы	
	Кнопки	44
Вс	троенные устройства	44
	Элемент питания В1	44
	Микроконтроллер	45
	Датчик температуры	45
	Буфер синхронизации PCIe	46
	Расширитель GPIO	46
	информация о состоянии	46
	Светодиоды	46
	D1	47
	D2	47
	D3	47
	Приложение	Λ Ω

NMS-Q7-EVM V1.1 ds-ru

Вступление

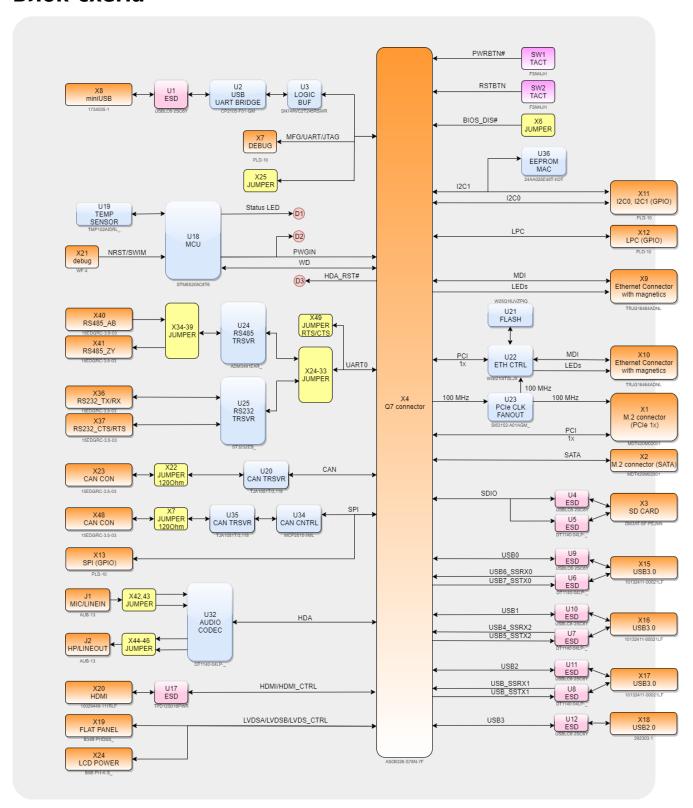
Материнская плата nms-q7-evm предназначена для маршрутизации интерфейсных сигналов модуля Qseven на внешние стандартные разъемы. Все соединения модуля Qseven с внешним миром осуществляются через эту материнскую плату, которая также обеспечивает требуемое напряжение для модулей, получая его от источника питания.

Технические характеристики

Основные технические характеристики

renobilitie Textili Teettile xapati epitet iitti					
Видео интерфейсы	HDMI				
Разрешения видео	Разрешение HDMI до 4k при 60 Гц				
Накопитель	1 x S-ATA канал (М.2 разъем)				
	3 x USB 3.0				
USB	1 x USB 2.0				
	1 x мини USB (преобразование из USB в UART)				
	1 Гигабит Ethernet (от Ethernet PHY, расположенного на Q7				
Сеть	SOM модуле)				
Cerb	1 Гигабит Ethernet (от WGI210ITSLJX (PCIe Gigabit Ethernet				
	РНҮ) фирмы Intel, установленного на плате)				
Avena	1 x 3.5 мм аудио разъем (Line in\Mic in)				
Аудио	1 x 3.5 мм аудио разъем (Line out\Headphones)				
	1 x PCI-е 1х подключен к M.2 разъему				
PCI Express	1 x PCI-e 1x подключен к WGI210ITSLJX (PCIe Gigabit Ethernet PHY) фирмы Intel				

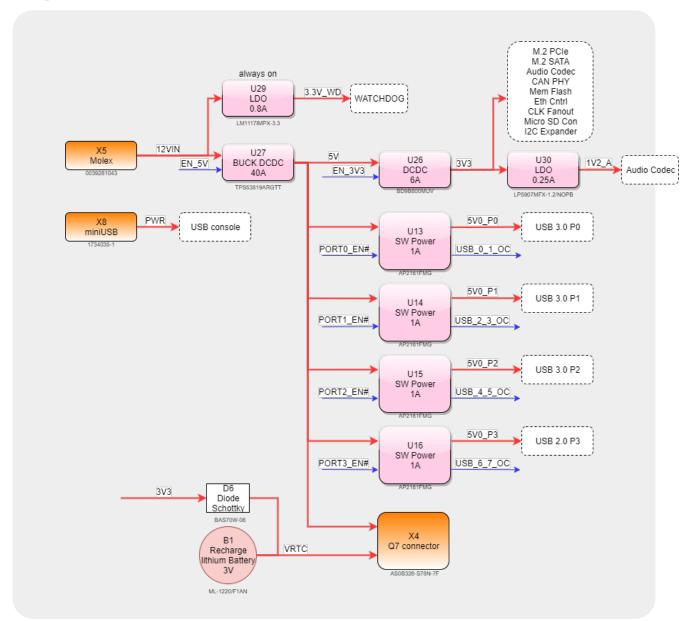
http://wiki.inmys.ru/ 3 Printed on 2025/12/04 05:35


Последовательные порты	1 x Последовательный порт (RS-232/RS-485/RS-422)
	1 x отладочная консоль (из UART в USB)
	1 x CAN интерфейс
	2 x I2C интерфейс
Другие интерфейсы	1 x SPI интерфейс
	1 x LPC интерфейс (8 GPIO выводов)
Напряжение питания	+12 Вольт
Потребление	TBD
Рабочая Температура	-40°C+85°C
Габаритные размеры	147×101.60 мм

Электрические характеристики

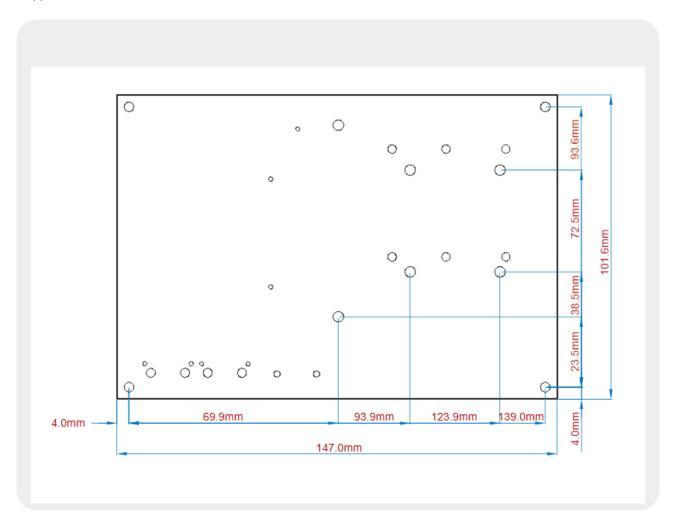
Для правильной работы платы необходим внешний источник + 12 В. Все требуемые напряжения преобразовываются из входного питания.

Блок-схема



Блок-схема

Дерево питания


Дерево питания

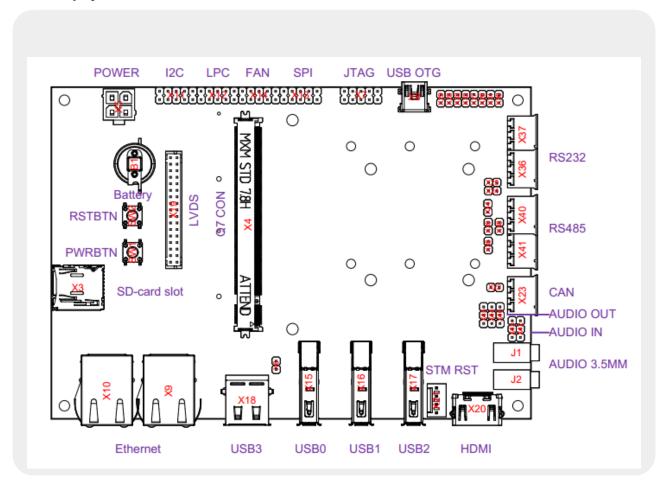
Механические характеристики

Размер платы : 147 х 101,60 мм.

Печатная плата состоит из 6 слоев, часть из которых являются заземляющими для подавления помех.

Габаритные размеры

http://wiki.inmys.ru/ 7 Printed on 2025/12/04 05:35


Соединители

Вступление

На плате предусмотрена защита от перегрузки по току, фильтрация питания и защита от электростатического разряда.

Расположение разъемов

Вид сверху

Расположение разъемов (Вид сверху)

Вид снизу

Расположение разъемов (Вид снизу)

Описание разъемов

Разъем питания

Разъем питания

Функция	Питание				
Позиционное обозначение	e X5				
P/N	0039281043 фирмы Моleх				
	Вывод	Описание			
	1	GND			
Назначение выводов	2	GND			
	3	12VIN			
	4	12VIN			

Разъем Qseven®

Разъем Qseven

Функция	Разъем Qseven Gen 2.1
Позиционное обозначение	X4
P/N	AS0B326-S78N-7F фирмы FOXCONN
Назначение выводов	см. приложение 1

Сигналы интерфейса PCI Express

Разъем QSeven предлагает четыре линии PCI Express (поддерживается PCI Express Gen 3.0 (8 Гбит/с)), которые напрямую управляются внешним модулем QSeven.

Ниже приведены сигналы, относящиеся к интерфейсу PCI Express:

PCIe сигналы разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
PCIE0_TX+	179			Линия PCI Express #0,	
PCIE0_TX-	181	вход		дифференциальная пара, передача.	
PCIE0_RX+	180	51.176.5		Линия PCI Express #0,	
PCIE0_RX-	182	выход		дифференциальная пара, прием.	
PCIE1_TX+	173			Линия PCI Express #1,	
PCIE1_TX-	175	вход		дифференциальная пара, передача.	
PCIE1_RX+	174	51.176.5		Линия PCI Express #1,	
PCIE1_RX-	176	выход		дифференциальная пара, прием.	
PCIE2_TX+	167	D.V.O. F.		Линия PCI Express #2,	
PCIE2_TX-	169	вход		дифференциальная пара, передача.	
PCIE2_RX+	168	DLIVOT		Линия PCI Express #2,	
PCIE2_RX-	170	выход		дифференциальная пара, прием.	

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
PCIE3_TX+	161	D)/0.5		Линия PCI Express #3,	
PCIE3_TX-	163	вход		дифференциальная пара, передача.	
PCIE3_RX+	162	51.176.5		Линия PCI Express #3,	
PCIE3_RX-	164	выход		дифференциальная пара, прием.	
PCIE_CLK_REF+	155	ВЫХОЛ		Опорный тактовый сигнал PCI Express для линий с 0 по 3,	
PCIE_CLK_REF-	157	ВЫХОД		дифференциальная пара.	
PCIE_WAKE#	156	выход	3.3	Сигнал пробуждения системы внешнего модуля QSeven. Он подключен к контроллеру Ethernet WGI210ITSLJX_ (U22.16) через резистор 0 Ом (R70) для возможности отключения.	
PCIE_RST#	158	вход	3.3	Сигнал сброса, который отправляется с внешнего модуля QSeven на контроллер Ethernet (U22.17) и на разъем MDT420M02001 (X1.50).	

Сигналы интерфейса UART

Разъем Q7 платы nms-q7-evm предлагает один интерфейс UART.

Ниже приведены сигналы, относящиеся к интерфейсу UART:

Сигналы Uart разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
UARTO_TX	171	вход	3.3	Линия последовательной передачи данных.	
UARTO_RX	177	выход	3.3	Линия последовательного приема данных.	
UARTO_RTS#	172	вход	3.3	Сигнал квитирования, запрос на отправку данных.	
UARTO_CTS#	178	выход	3.3	Сигнал квитирования, разрешение отправки данных.	

http://wiki.inmys.ru/ 11 Printed on 2025/12/04 05:35

Сигналы интерфейса Гигабит Ethernet

MDI интерфейс может работать в режимах 1000, 100 и 10 Мбит / с. Ниже приведены сигналы, относящиеся к интерфейсу Гигабит Ethernet (участвующие в управлении PCI Express):

Сигналы Гигабит ethernet разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
GBE_MDI0+	12	вход/выход		Дифференциальная пара ввода/вывода #0.	
GBE_MDI0-	10	БХОД/БЫХОД		Эта пара сигналов используется для всех режимов.	
GBE_MDI1+	11			Дифференциальная пара ввода/вывода #1. Эта пара	
GBE_MDI1-	9	вход/выход		сигналов используется для всех режимов.	
GBE_MDI2+	6			Дифференциальная пара ввода/вывода #2. Эта пара сигналов	
GBE_MDI2-	4	вход/выход		используется только для режима 1000 Мбит/с (Гигабит Ethernet).	
GBE_MDI3+	5			Дифференциальная пара ввода/вывода #3. Эта пара сигналов	
GBE_MDI3-	3	вход/выход		используется только для режима 1000 Мбит/с (Гигабит Ethernet).	
GBE_ACT#	14	вход	3.3	Индикатор активности контроллера Ethernet.	
GBE_LINK#	13	вход	3.3	Индикатор соединения контроллера Ethernet.	
GBE_LINK100#	7	вход	3.3	Индикатор соединения контроллера Ethernet 100 Мбит/с.	Не используется.

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
GBE_LINK1000#	8	вход	3.3	Индикатор соединения контроллера Ethernet 1 Гбит/с.	Не используется.
GBE_CTREF	15	вход		Опорное напряжение для центрального отвода трансформатора канала 0.	

Сигналы интерфейса SATA

На плате nms-q7-evm есть два интерфейса SATA, но доступен только один.

Ниже приведены сигналы, относящиеся к интерфейсу SATA:

Сигналы SATA разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
SATA0_TX+	29			Линия SATA #0,	
SATA0_TX-	31	ВХОД		дифференциальная пара, передача.	
SATA0_RX+	35			Линия SATA #0,	
SATA0_RX-	37	ВЫХОД		дифференциальная пара, прием.	
SATA_ACT#	33	вход	3.3	Индикатор активности.	Не используется.
SATA1_TX+	30			Линия SATA #1,	Не
SATA1_TX-	32	ВХОД		дифференциальная пара, передача.	используется.
SATA1_RX+	36	PLIVOT		Линия SATA #0, дифференциальная	Не
SATA1_RX-	38	выход		пара, прием.	используется.

Сигналы интерфейса SDI/O

Порт SDI/O # 1 может работать в 1-битном и 4-битном режимах.

Ниже приведены сигналы, относящиеся к интерфейсу SDI/O:

Сигналы интерфейса SDIO разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
		вход/выход	3.3	Сигнал обнаружения	
SDIO_CD#	43			карты, который сигнализирует о	
				наличии карты SDIO.	

http://wiki.inmys.ru/ 13 Printed on 2025/12/04 05:35

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
SDIO_CLK	42	вход	3.3	Тактовый сигнал.	
SDIO_CMD	45	вход/выход	3.3	Команда/Ответ. Этот сигнал используется для инициализации карты и для передачи команд.	
SDIO_LED	44	вход	3.3	Входной сигнал LED.	Не используется.
SDIO_WP	46	вход/выход	3.3 PD 10 кОм	Защита от записи.	
SDIO_PWR#	47	вход	3.3	Включение питания (используется для управления светодиодом при передаче данных по шине).	Не используется.
SDIO_DAT[0÷7]	48-51	вход/выход	3.3	Шина данных SDIO. Сигнал SDIO_DATO используется для всех режимов связи. Сигналы SDIO_DAT[1 ÷ 3] требуются для 4-битных режимов связи SDIO.	SDIO_DAT[4÷7] не используется.

Сигналы интерфейса USB

Ниже приведены сигналы, относящиеся к интерфейсу USB:

USB сигналы разъема Q7

Имя вывода	Номер вывода		Стандартное напряжение(В)		Альтернативное имя вывода	Функциональное назначение	Примечание
USB_P0+	96	вход/выход		USB порт #0, дифференциальная			
USB_P0-	94	вход/выход		пара.			
USB_P1+	95			USB порт #1,			
USB_P1-	93	вход/выход		дифференциальная пара.			
USB_P2+	90			USB порт #2,			
USB_P2-	88	вход/выход		дифференциальная пара.			
USB_P3+	89			USB порт #3,			
USB_P3-	87	вход/выход		дифференциальная пара.			
USB_P4+	84	вход/выход		дифференциальная	USB_SSRX2+	USB SuperSpeed порт #2,	
USB_P4-	82				USB_SSRX2-	дифференциальная пара, прием (выход).	

	Номер	Тип	Стандартиол	Функциональное	Ли ториативио	Функциональное	
Имя вывода		вывода	Стандартное напряжение(В)	Функциональное назначение	имя вывода	Функциональное назначение	Примечание
USB_P5+	83	вход/выход		USB порт #5, дифференциальная	USB_SSTX2+	USB SuperSpeed порт #2, дифференциальная	
USB_P5-	81	влод/вылод		пара.	USB_SSTX2-	пара, передача (вход).	
USB_P6+	78	DV0 5/D1 W0 5		USB порт #6,	USB_SSRX0+	USB SuperSpeed порт #0,	
USB_P6-	76	вход/выход		дифференциальная пара.	USB_SSRX0-	дифференциальная пара, прием (выход).	
USB_P7+	77	DV0 F/DL IV0 F		USB порт #7,	USB_SSTX0+	USB SuperSpeed порт #0,	
USB_P7-	75	вход/выход		дифференциальная пара.	USB_SSTX0-	дифференциальная пара, передача (вход).	
USB_SSRX1+	132	выход		USB SuperSpeed порт #1,			
USB_SSRX1-	134	Быход		дифференциальная пара, прием.			
USB_SSTX1+	144	вход		USB SuperSpeed порт #1,			
USB_SSTX1-	146	ВХОД		дифференциальная пара, передача.			
USB_0_1_OC#	86	выход	3.3	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#0 и #1.			
USB_2_3_OC#	85	выход	3.3	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#2 и #3.			
USB_4_5_OC#	80	выход	3.3	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#4 и #5.			
USB_6_7_OC#	79	выход	3.3	Обнаружения перегрузки по USB. Этот вывод используется для обнаружения перегрузки по току портов USB#6 и #7.			
USB_VBUS	91	выход	3.3 ?	Входное питание, режим USB- клиента			можно подключить к 5В.
USB_ID	92	выход	3.3 PU 10 кОм	USB ID. USB-порт #1 настроен на работу в режиме хоста.			
USB_OTG_PEN	56	вход	3.3	Включение питания для порта USB #1.			Не используется.

Сигналы интерфейса CAN

Ниже приведены сигналы, относящиеся к интерфейсу CAN:

Сигналы интерфейса CAN разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
CAN0_TX	129	вход	3.3	Передача данных по шине CAN, канал 0.	
CANO_RX	130	выход	3.3	Прием данных по шине CAN, канал 0.	

Сигналы интерфейса SPI

Ниже приведены сигналы, относящиеся к интерфейсу SPI:

Сигналы интерфейса SPI разъема Q7

Имя	Номер	Тип	Стандартное	Функциональное	Примечание
вывода	вывода	вывода	напряжение(В)	назначение	-
SPI_MOSI	199	вход	3.3	Выход ведущего, вход ведомого. Служит для передачи данных от ведущего (модуль QSeven) устройства ведомому (устройства SPI).	
SPI_MISO	201	выход	3.3	Вход ведущего, выход ведомого. Служит для передачи данных от ведомого (устройства SPI) устройства ведущему (модуль QSeven).	
SPI_SCK	203	вход	3.3	Последовательный тактовый сигнал SPI. Служит для передачи тактового сигнала для ведомых устройств (от модуля Q7 на устройства SPI).	
SPI_CS0#	200	вход	3.3	Первичный выбор ведомого устройства на шине SPI.	
SPI_CS1#	202	вход	3.3	Вторичный выбор ведомого устройства на шине SPI. Этот сигнал используется только в том случае, если к плате nms-q7-evm подключено два устройства SPI, и первый сигнал выбора микросхемы (SPI_CSO #) уже используется.	

Сигналы LVDS/eDP интерфейсов

На разъеме QSeven доступно два канала LVDS, каждый из которых состоит из одной пары тактов и четырех пар данных, либо 2 канала eDP.

Можно настроить выход LVDS (в модуле QSeven) таким образом, чтобы его можно было использовать как:

- один одноканальный выход,
- два идентичных одноканальных выхода,
- два независимых одноканальных выхода.

Ниже приведены сигналы, относящиеся к интерфейсу LVDS:

Сигналы интерфейса LVDS разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Альтернативное имя вывода	Функциональное назначение	Примечание
LVDS_A0+	99			Основной канал LVDS	eDP0_TX0+	Основной канал eDP #0,	
LVDS_A0-	101	вход		#0, дифференциальная пара.	eDP0_TX0-	дифференциальная пара.	
LVDS_A1+	103			Основной канал LVDS	eDP0_TX1+	Основной канал eDP #1,	
LVDS_A1-	105	вход	#1, дифференциальная — пара. eI		eDP0_TX1-	дифференциальная пара.	
LVDS_A2+	107			Основной канал LVDS	eDP0_TX2+	Основной канал eDP #2,	
LVDS_A2-	109	вход		#2, дифференциальная пара.	eDP0_TX2-	дифференциальная пара.	
LVDS_A3+	113			Основной канал LVDS	eDP0_TX3+	Основной канал eDP #3,	
LVDS_A3-	115	вход		#3, дифференциальная пара.	eDP0_TX3-	дифференциальная пара.	
LVDS_A_CLK+	119	вход		Основной канал LVDS, тактирование,	eDP0_AUX+	Основной вспомогательный канал eDP,	
LVDS_A_CLK-	121	БХОД		дифференциальная пара.	eDP0_AUX-	дифференциальная пара.	
LVDS_B0+		руол		Вторичный канал LVDS #0, дифференциальная		Вторичный канал eDP #0,	
LVDS_B0-	102	вход		пара.		дифференциальная пара.	
LVDS_B1+	104			Вторичный канал LVDS #1, дифференциальная		Вторичный канал eDP #1,	
LVDS_B1-	106	вход			eDP1_TX1-	дифференциальная пара.	
LVDS_B2+	108	Вторичный канал LVDS вход #2, дифференциальная		Вторичный канал eDP #2,			
LVDS_B2-	110	вход		тара.	eDP1_TX2-	дифференциальная пара.	
LVDS_B3+	114	БУОЛ			eDP1_TX3+	Вторичный канал eDP #3,	
LVDS_B3-	116	вход		#3, дифференциальная пара.	eDP1_TX3-	дифференциальная пара.	
LVDS_B_CLK+	120	вход		Вторичный канал LVDS, тактирование,	eDP1_AUX+	Вторичный вспомогательный канал eDP,	
LVDS_B_CLK-	122	БЛОД		дифференциальная пара.	eDP1_AUX-	дифференциальная пара.	
LVDS_PPEN	111	вход	3.3	Сигнал включения питания панели. Может использоваться для включения/выключения подключенного дисплея LVDS.			
LVDS_BLEN	112	вход	3.3	Сигнал включения подсветки панели. Его можно использовать для включения/выключения подсветки подключенного дисплея LVDS.			

http://wiki.inmys.ru/ 17 Printed on 2025/12/04 05:35

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Альтернативное имя вывода	Функциональное назначение	Примечание
LVDS_BLT_CTRL/ GP_PWM_OUT0	123	вход	3.3	Этот сигнал можно использовать для регулировки яркости подсветки панели на дисплеях, поддерживающих правила широтномипульсной модуляции (ШИМ). Если управление яркостью подсветки через ШИМ не требуется, этот сигнал можно использовать в качестве выхода ШИМ общего назначения.			
LVDS_BLC_DAT	126	вход/выход	3.3	Управляющий сигнал данных для внешней микросхемы SSC.	eDP0_HPD#	Основной канал еDP, сигнал предназначен для определения моментов подключения и отключения дисплея (линия «горячего подключения»).	
LVDS_BLC_CLK	128	вход/выход	3.3	Управляющий тактовый сигнал для внешней SSC.	eDP1_HPD#	Вторичный канал еDP, сигнал предназначен для определения моментов подключения и отключения (линия «горячего подключения»).	
LVDS_DID_DAT	125	вход/выход	3.3	DisplayID DDC используемая для обнаружения плоских панелей LVDS. Если основная функциональность не используется, ее можно использовать как линию данных шины I2C общего назначения (GP2_I2C_DAT).			
LVDS_DID_CLK	127	вход/выход	3.3	Линия тактирования для обнаружения плоских панелей LVDS. Если основная функциональность не используется, ее можно использовать как линию данных шины I2C общего назначения (GP2_I2C_CLK)			

Сигналы аудио интерфейса

Ниже приведены сигналы, относящиеся к аудио интерфейсу:

Сигналы аудио интерфейса разъема Q7

от налы аудло тт орфолоа развета ду								
	Номер вывода			Функциональное назначение	Примечание			
HDA_SYNC	59	вход	3.3	Синхронизация шины HDA.				

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
HDA_RST#	61	вход	3.3	Сброс кодека.	
HDA_BCLK	63	вход	3.3	Битовый тактовый сигнал HDA.	
HDA_SDO	67	вход	3.3	Выходной сигнал данных HDA.	
HDA_SDI	65	выход	3.3	Входной сигнал данных HDA.	

Сигналы HDMI/DP интерфейсов

Есть возможность подключить до 3 независимых дисплеев, используя интерфейс HDMI вместе с двумя одноканальными интерфейсами LVDS.

Ниже приведены сигналы, относящиеся к HDMI/DP интерфейсам:

Сигналы HDMI/DP интерфейсов разъема Q7

Имя вывода	Номер вывода		Стандартное напряжение(В)	Функциональное назначение	Альтернативное имя вывода	Функциональное назначение	Примечание
TMDS_CLK+	131	вход		TMDS тактирование, дифференциальная пара.	DP_LANE3+	DP порт #3, дифференциальная пара.	
TMDS_CLK-	133	вход	DP_LANE3-				
TMDS_TX0+	143	вход		TMDS порт #0, дифференциальная пара.	DP_LANE2+	DP порт #2, дифференциальная пара.	
TMDS_TX0-	145	вход	DP_LANE2-			пара.	
TMDS_TX1+	137	вход		TMDS порт #1, дифференциальная пара.	DP_LANE1+	DP порт #1, дифференциальная пара.	
TMDS_TX1-	139	вход	DP_LANE1-			пара.	
TMDS_TX2+	149	вход		TMDS порт #2, дифференциальная пара.	DP_LANE0+	DP порт #0, дифференциальная	
TMDS_TX2-	151	вход	DP_LANE0-			пара.	
HDMI_CTRL_DAT	150	вход/выход	3.3	DDC управляющий сигнал (данные) для устройства HDMI.			
HDMI_CTRL_CLK	152	вход/выход	3.3	DDC управляющий сигнал (тактирование) для устройства HDMI.			
HDMI_HPD#	153	выход	3.3	HDMI сигнал обнаружения горячей замены (Hot Plug Detect)			
HDMI_CEC	124	вход/выход	3.3	Линия управления потребительской электроникой HDMI (CEC).	DP_AUX+	DP вспомогательный канал используется для настройки и управления, дифференциальная пара.	вход/выход вывод 138
					DP_AUX-		вход/выход вывод 140
					DP_HPD#	DP сигнал обнаружения горячей замены (Hot Plug Detect)	выходной вывод 154 не используется

http://wiki.inmys.ru/ 19 Printed on 2025/12/04 05:35

Сигналы интерфейса LPC и GPIO

На разъеме QSeven имеется восемь контактов, которые можно использовать для реализации интерфейса LPC или в качестве входов/выходов общего назначения (GPIO).

Когда выводы Q7 модуля сконфигурированы для использования интерфейса LPC, будут доступны следующие сигналы:

Сигналы LPC/GPIO разъема Q7

Имя вывода	Номер вывола	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
LPC_AD[0÷3]			-	Шина данных LPC.	Входы/выходы общего назначения GPIOO-GPIO3
LPC_CLK	189	вход	3.3	Входной тактовый сигнал LPC.	Вход/выход общего назначения GPIO4
LPC_FRAME#	190	вход	3.3	Frame индикатор LPC. Этот сигнал используется для оповещения о начале нового цикла передачи или об окончании существующих циклов из-за условия прерывания или истечения времени ожидания.	Вход/выход общего назначения GPIO5
LPC_LDRQ#	192	выход	3.3	DMA запрос LPC. Этот сигнал используется только периферийными устройствами, требующими прямого доступа к памяти или управления шиной.	
SERIRQ	191	вход/выход	3.3	Запрос SerIRQ LPC. Этот сигнал используется только периферийными устройствами, требующими поддержки прерывания.	Вход/выход общего назначения GPIO6.

Когда выводы модуля Q7 сконфигурированы как GPIO, все предыдущие сигналы недоступны, и соответствующие контакты на разъеме Qseven являются двунаправленными входами/выходами общего назначения с электрическим уровнем +3.3

В.

Сигналы I2C интерфейса

Ниже приведены сигналы, относящиеся к I2С интерфейсам:

Сигналы интерфейса I2С разъема Q7

сигналы интерфенеа 120 развена Ст							
Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание		
SMB_CLK	60	вход/выход	3.3 PU 4.7 кОм	Линия синхронизации SMBus.			
SMB_DAT	62	вход/выход	3.3 PU 4.7 кОм	Линия передачи данных SMBus.			
SMB_ALERT#	64	вход/выход	3.3 PU 4.7 кОм	Сигнал оповещение SMBus.			
GP0_I2C_CLK	66	вход/выход	3.3	Входной тактовый сигнал I2C.			
GP0_I2C_DAT	68	вход/выход	3.3	Шина данных I2C .			

Сигналы управления питанием

На разъеме Q7 есть набор сигналов, которые используются для управления шинами питания и состояниями питания.

Ниже приведены сигналы, относящиеся к управлению питанием:

Сигналы питания разъема Q7

Имя вывода	•	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
PWGIN	26	выход	5	Питание в норме. Этот сигнал сигнализирует о готовности и стабильности блока питания.	
PWRBTN#	20	выход	3.3 PU 10 кОм	Кнопка питания. Этот сигнал подключен к кнопке SW1, которая включает или выключает электропитание.	
RSTBTN#	28	выход	3.3 PUp 10 кОм	Кнопка сброса. Этот сигнал подключен к кнопке SW2, при нажатии на которую вырабатывается сброс для модуля QSeven.	
BATLOW#	27	выход	3.3 PU 10 кОм	Низкий заряд батареи.	Не используется.

http://wiki.inmys.ru/ 21 Printed on 2025/12/04 05:35

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
WAKE#	17	выход	3.3 PU 10 кОм	Сигнал «пробуждения».	Не используется.
SUS_STAT#	19	вход	3.3	Запрос сведений о статус управления. Этот вход по разъему X14.	
SUS_S3#	18	вход	3.3	Вход статуса S3 .	He используется.
SUS_S5#	16	вход	3.3	Вход статуса S5: Этот сигнал указывает состояние S4 или S5 (Soft Off).	Не используется.
SLP_BTN#	21	выход	3.3 PU 10 кОм	Кнопка сна (Модуль Qseven перейдет в спящий режим при нажатии этой кнопки).	Не используется.
LID_BTN#	22	выход	3.3 PU 10 кОм	Кнопка LID (Нажатие кнопки LID создает низкий активный сигнал, используемый операционной системой АСРІ для обнаружения переключателя LID и для перевода системы в состояние сна или для его повторного пробуждения).	Не используется.

Реализация управления вентилятором

Ниже приведены сигналы, относящиеся к управлению вентилятором:

Управление вентилятором от разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
FAN_T_IN	195	выход	3.3	Вход тахометра вентилятора (может использоваться как вход таймера общего назначения).	
FAN_OUT	196	вход	3.3	Управление скоростью вентилятора (может использоваться в качестве ШИМ-выхода общего назначения).	

Сигналы управления системой защиты от перегрева

Ниже приведены сигналы, относящиеся к управлению системой защиты от

перегрева:

Сигналы управления системой защиты от перегрева разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
THRM#	69	выход	3.3	Индикация ситуации перегрева (может использоваться для запуска термического регулирование).	
THRMTRIP#	71	вход	3.3	Отключение процессором системы при перегреве.	

Разные сигналы

Ниже приведены сигналы:

Разные сигналы разъема Q7

ashbe em hazb passena q								
Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание			
WDTRIG#	70	выход	3.3	Коммутационный сигнал сторожевого таймера				
WDOUT	72	вход	3.3	Индикатор события сторожевого таймера				
SPKR	194	вход	3.3	Выход на динамик.				
BIOS_DIS#	41	выход	3.3	Модуль BIOS отключен.				

Производственные сигналы

Эти контакты предназначены для обработки и отладки.

Ниже приведены сигналы, относящиеся к обработке и отладке:

Производственные сигналы разъема Q7

	•		Стандартное напряжение(В)	Функциональное назначение	Примечание
MFG_NC0	207	выход	3.3	JTAG_TCK /специфический управляющий сигнал	Может использоваться как сигнал JTAG_TCK для периферийного сканирования в процессе производства или в качестве специфического сигнала управления.

http://wiki.inmys.ru/ 23 Printed on 2025/12/04 05:35

Имя вывода		Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
MFG_NC1	209	вход	3.3	JTAG_TDO / UART_TX	Может использоваться как сигнал JTAG_TDO для периферийного сканирования в процессе производства или как UART_TX (через мультиплексор) для подключения простого UART для реализации прошивки и загрузчика.
MFG_NC2	208	выход	3.3	JTAG_TDI / UART_RX	Может использоваться как сигнал JTAG_TDI для периферийного сканирования в процессе производства или как UART_RX (через мультиплексор) для подключения простого UART для реализации прошивки и загрузчика.
MFG_NC3	210	выход	3.3	JTAG_TMS / BOOT	Может использоваться как сигнал JTAG_TMS для периферийного сканирования в процессе производства или в качестве специфического сигнала BOOT для реализаций прошивки и загрузчика.
MFG_NC4	204	выход	3.3 PD 10 кОм	JTAG-TRST / управляющий сигнал для цепи мультиплексора	Может использоваться как сигнал JTAG_TRST для периферийного сканирования в процессе производства или в качестве управляющего сигнала для схемы мультиплексора на модуле, обеспечивающей вторичную функцию для MFG_NCO3 (JTAG / UART). Можно установить подтягивающий резистор 10 кОм.

Сигналы заземления (GND)

Ниже приведены сигналы заземления:

Сигналы GND разъема Q7

Имя вывода	Номер вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
GND	1, 2, 23, 24, 25, 34, 39, 40, 57, 58, 73, 74, 97, 98, 117, 118, 135, 136, 141, 142, 147, 148, 159, 160, 165, 166, 183, 184, 197, 198		Земля	

Сигналы питания

Ниже приведены сигналы питания:

Сигналы питания разъема О7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
VCC	219-230	-	5	Питание +5В.	
VCC_5V_SB	205, 206		5	Резервное питание +5В.	
VCC_RTC	193		3	Напряжение питания +3В часов реального времени (RTC). Используется для работы RTC и энергонезависимости регистра памяти при отсутствии питания системы).	

Неподключенные и зарезервированные сигналы

Ниже приведены Неподключенные и зарезервированные сигналы:

Неподключенные и зарезервированные сигналы разъема Q7

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(B)	Функциональное назначение	Примечание
reserved (SDIO_LED)	44			Сигнал управления светодиодом SDIO_LED	
reserved (SDIO_DAT5)	52			Шина данных SDIO_DAT[47]	
reserved (SDIO_DAT4)	53				
reserved (SDIO_DAT7)	54				
reserved (SDIO_DAT6)	55				

http://wiki.inmys.ru/ 25 Printed on 2025/12/04 05:35

Имя вывода	Номер вывода	Тип вывода	Стандартное напряжение(В)	Функциональное назначение	Примечание
NC (VCC)	211-218			Эти контакты зарезервированы для использования в последующих версиях разъема Qseven, чтобы избежать проблем совместимости в будущем.	

SPI

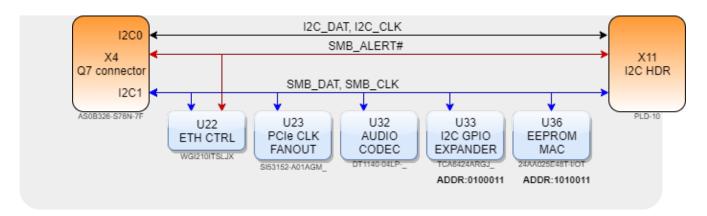
Плата nms-q7-evm обеспечивает подключение шины последовательного периферийного интерфейса (SPI) модуля Qseven (разъем Qseven X4) к внешним устройствам с помощью разъема X13.

10-контактный разъем может использоваться для SPI EEPROM и устройств Serial Flash по интерфейсу SPI.

Например, можно использовать последовательную 3.3 В флэш-память для загрузки системы из внешнего BIOS.

SPI разъем

Функция	SPI разъем		
Позиционное обозначение	X13		
P/N	PLD-10		
	Вывод	Описание	
	1	SPI_MOSI	
	2	GND	
	3	SPI_MISO	
	4	GND	
	5	SPI_SCK	
	6	GND	
	7	SPI_CS1	
	8	GND	
	9	SPI_CS0	
	10	GND	


I2C

На плате nms-q7-evm доступно три интерфейса I2C:

- 2x I2C между модулем Qseven и материнской платой nms-q7-evm,
- 1x I2C управление nms-q7-evm микроконтроллером STM8,(см. Микроконтроллер).

Интерфейс I2C Разъем I2C

Функция	Разъем I2С		
Позиционное обозначение	X11		
P/N	PLD-10		
	Вывод	Описание	
	1	I2C1_SMB_SCL	
	2	GND	
	3	I2C1_SMB_SDA	
	4	GND	
Назначение выводов	5	SMB_ALERT#	
	6	GND	
	7	I2C0_SCL	
	8	GND	
	9	I2C0_SDA	
	10	GND	

LPC

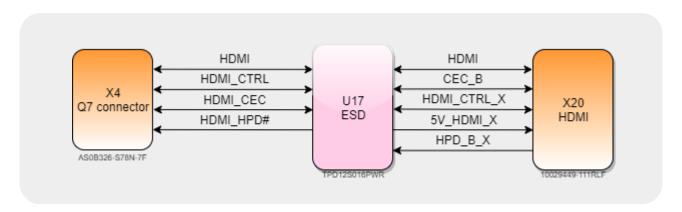
Для связи с внешними устройствами по интерфейсу LPC или линиям ввода-вывода общего назначения (GPIO) сигналы от модуля Qseven (разъем Qseven X4) выведены на штыревой разъем X12 на плате nms-q7-evm.

Этот разъем можно использовать для отладки или для подключения таких устройств, как Super I/O.

Разъем LPC/GPIO

Функция	Разъем LPC/GPIO		
Позиционное обозначение	X12		
P/N	PLD-10		
	Вывод	Описание	
	1	LPC_GPIOX8_LDRQ#	
	2	LPC_GPIOX8_AD1	
	3	LPC_GPIOX8_AD3_	
	4	LPC_GPIOX8_AD0	
Назначение выводов	5	LPC_GPIOX8_FRAME#	
	6	GND	
	7	LPC_GPIOX8_AD2	
	8	LPC_GPIOX8_CLK	
	9	LPC_GPIOX8_SERIRQ	
	10	GND	

HDMI


Плата nms-q7-evm обеспечивает подключение модуля Qseven (разъем Qseven X4) по мультимедийному интерфейсу высокой чёткости (HDMI) к внешним устройствам с помощью разъема X20.

Интерфейс позволяет передавать цифровые видеоданные высокого разрешения и многоканальные цифровые аудиосигналы с защитой от копирования (HDCP).

Разрешение до 4K UHD с частотой 60 Гц.

Поддерживаются все версии HDMI до 2.0.

Для подавления переходных напряжений и защиты сигналов от электростатических разрядов (ESD) используется TVS устройство TPD12S016 фирмы Texas Instruments.

Интерфейс HDMI Разъем HDMI

1 45 5611 115111		
Функция	Разъем HDMI	
Позиционное обозначение	X20	
P/N	P10029449-111RLF фирмы Amphenol	

	Вывод	Описание	Вывод	Описание
	1	DP_D0_P (D2+)	11	GND
	2	GND	12	DP_D3_N (CLK-)
	3	DP_D0_N (D2-)	13	CEC_B_X
	4	DP_D1_P (D1+)	14	NC
Назначение выводов	5	GND	15	HDMI_SCL_X
	6	DP_D1_N (D1-)	16	HDMI_SDA_X
	7	DP_D2_P (D0+)	17	GND
	8	GND	18	5V_HDMI_X
	9	DP_D2_N (D0-)	19	HPD_B_X
	10	DP_D3_P (CLK+)		

LVDS

Плата nms-q7-evm обеспечивает подключение модуля Qseven (разъем Qseven X4) по LVDS к внешним дисплеям с помощью разъема X19.

Материнская плата поддерживает две панели LVDS, которые можно использовать одновременно. Плата имеет два порта LVDS - А и В, которые можно использовать для работы с одной панелью со скоростью до 165 Мпикселей / с или в качестве двух отдельных портов до 85 Мпикселей / с каждый.

Во всех конфигурациях Qseven предоставляет только один набор сигналов подсветки и включения питания панели, а также один сигнал управления яркостью для обоих.

Панель активируется с помощью сигнала LVDS_PPEN, а подсветка включается с помощью сигнала LVDS BLEN.

Возможные варианты подключения дисплеев:

Одна панель LVDS

Подключение одного дисплея к порту А. Сигналы LVDS В не используются.

Одна панель LVDS с высоким разрешением

Подключение одного дисплея с высоким разрешением.

В этом варианте сигналы LVDS A и LVDS В подключаются к разъему X19.

Две панели LVDS

Подключение двух панелей LVDS.

Панель 1 - основная - подключена к порту А с соответствующим сигналом включения питания панели и сигналом включения подсветки.

LVDS Connector

Функция	Разъем	Разъем LVDS				
Позиционное обозначение	X19	X19				
P/N	B34B-P	334B-PHDSS_ фирмы JST Sales America Inc.				
	Вывод	од Описание Вы		Описание		
	1	LVDS_DID_SCL	18	LVDS_BLT_CTRL		
	2	LVDS_DID_SDA	19	GND	1	
	3	3V3	20	LVDS_A_D3	ı	
	4	3V3	21	LVDS_B_DC	ı	
	5	LVDS_A_D0_N	22	LVDS_B_D(1	
Назначение выводов	6	GND	23	LVDS_B_D1	1	
	7	LVDS_PPEN	24	GND		
	8	LVDS_A_D0_P	25	GND		
	9	LVDS_A_D1_P	26	LVDS_B_D1	1	
	10	LVDS_A_D1_N	27	LVDS_B_D2	1	
	11	LVDS_A_D2_P	28	LVDS_B_D2	1	
	12	LVDS_BLEN	29	LVDS_B_CL	1 16	
	13	eDP0_HPD	30	GND		
	14	LVDS_A_D2_N	31	eDP1_HPD		
	15	LVDS_A_CLK_P	32	LVDS_B_CLK_N		
	16	LVDS_A_CLK_N	33	LVDS_B_D3_N		
	17	LVDS_A_D3_P	34	LVDS_B_D3_P		

LVDS питание и управление

На плате nms-q7-evm установлен 5-контактный разъем X24, предназначенный для питания и управления подсветкой дисплея.

Напряжение питания преобразователя подсветки может быть установлено на + 12B или + 5B.

LVDS питание и управление

Функция	Разъем LVDS питание и управление		
Позиционное обозначение	X24		
P/N	B5B-PH-K-S_ фирмы JST Sales America Inc		
Назначение выводов	Вывод	Описание	
	1	12VINT	
	2	GND	
	3	LVDS_BLEN	
	4	LVDS_BLT_CTRL	
	5	5V	

Так же дополнительно по питанию установлены предохранители C1S 750 фирмы BELFUSE F1 (12VINT) и F2 (5V).

USB

На плате nms-q7-evm доступно четыре интерфейса USB: 3xUSB 3.0 и 1xUSB 2.0.

USB-порты № 0, № 1, № 2 вместе с USB-портами Superspeed № 0, № 1, № 2 подключены к стандартной розетке USB 3.0 типа А.

Порт USB № 3 подключен к стандартной розетке USB 2.0 типа А.

Отладочная консоль USB-UART подключена к стандартной розетке USB 2.0 типа В.

Для защиты от электромагнитных и электростатических разрядов, перегрузки по току используются USB-коммутаторы, TVS и ESD-диоды на линиях передачи данных и напряжения USB.

USB порт 0

Разъем USB порт 0

Функция	Разъем USB порт 0		
Позиционное обозначение	X15		
P/N	10132411-00021LF фирмы AMPHENOI		
	Вывод	Описание	
	1	5V0_P0 (VBUS)	
	2	USB0_X_N (D-)	
	3	USB0_X_P (D+)	
Назизионно выполов	4 GND		
Назначение выводов	5	USB6_SSRX0_N (STDA_SSRX-)	
	6	USB6_SSRX0_P (STDA_SSRX+)	
	7	GND	
	8	USB7_SSTX0_N (STDA_SSTX-)	
	9	USB7_SSTX0_P (STDA_SSTX+)	

USB порт 1

Разъем USB порт 1

Функция	Разъем USB порт 1		
Позиционное обозначение	X16		
P/N	10132411-00021LF фирмы AMPHENO		
	Вывод	Описание	
	1	5V0_P1 (VBUS)	
	2	USB2_X_N (D-)	
	3	USB2_X_P (D+)	
	4	GND	
Назначение выводов	5	USB4_SSRX2_N (STDA_SSRX-)	
	6	USB4_SSRX2_P (STDA_SSRX+)	
	7	GND	
	8	USB5_SSTX2_N (STDA_SSTX-)	
	9	USB5_SSTX2_P (STDA_SSTX+)	

http://wiki.inmys.ru/ 31 Printed on 2025/12/04 05:35

USB порт 2

Разъем USB порт 2

Функция	Разъем USB порт 2			
Позиционное обозначение	X17			
P/N	10132411-00021LF фирмы AMPHENOL			
	Вывод	Описание		
Назначение выводов	1	5V0_P2 (VBUS)		
	2	USB1_X_N (D-)		
	3	USB1_X_P (D+)		
	4	GND		
	5	USB_SSRX1_N (STDA_SSRX-)		
	6	USB_SSRX1_P (STDA_SSRX+)		
	7	GND		
	8	USB_SSTX1_N (STDA_SSTX-)		
	9	USB_SSTX1_P (STDA_SSTX+)		

USB порт 3

Разъем USB порт 3

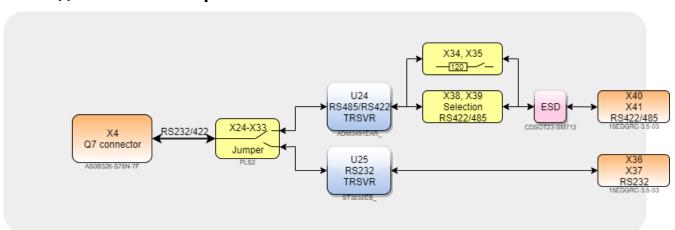
Функция	Разъем USB порт 3		
Позиционное обозначение X18			
P/N	292303-1 фирмы TECONN		
	Вывод	Описание	
	1	5V0_P3 (VCC)	
Haarrarian pripagas	2	USB3_X_N (DM)	
Назначение выводов	3	USB3_X_P (DP)	
	4	G	
	G	GND	

Отладочная консоль (мост USB-UART).

Для преобразования UART в USB используется контроллер USB-Dual-UART CP2105-F01-GM (U2) фирмы Silicon Labs.

СР2105 включает в себя контроллер USB 2.0 fullspeed , приемопередатчик USB, генератор, одноразовое программируемое ПЗУ и две асинхронные последовательные шины данных (UART).

Для асинхронной связи между двумя шинами данных используется двухбитовый неинвертирующий шинный трансивер с двумя раздельными настраиваемыми шинами питания SN74AVC2T245RSWR (U3) фирмы Texas Instruments.



Отладочная консоль USB Разъем USB (USB-UART)

· · · · · · · · · · · · · · · · · · ·			
Функция	Разъем USB (USB-UART)		
Позиционное обозначение	X8		
P/N	1734035-1 фирмы TECONN		
	Вывод	Описание	
	1	VCC	
Haarraria ar raa zan	2	DM	
Назначение выводов	3	DP	
	4	ID	
	5	GND	

Последовательные порты

Блок-схема Rs232/422/485

Для подключения к стандартным последовательным портам (например, предлагаемым обычными ПК) на плате имеется трансивер RS-232 ST3232EB_ (U25) фирмы STMicroelectronics и трансивер RS-485 ADM3491EAR (U24) фирмы Analog Devices.

Перемычки для выбора RS-232 \ RS485 \ RS422

Перемычки для выбора RS-232 \ RS485 \ RS422

- 1			1		•							
	X24	X25	X26	X27	X28	X29	X30	X31	X32	X33	X38	X39
RS232	-	+	-	+	-	+	-	+	-	+	-	-
RS422	+	-	+	-	+	-	+	-	+	-	-	-
RS485	+	-	+	-	+	-	+	-	+	-	+	+

http://wiki.inmys.ru/ 33 Printed on 2025/12/04 05:35

где «+» означает установить, «-» - не устанавливать

RS-232

Разъем RS232 данные

Функция	Разъем RS232 данные		
Позиционное обозначение	X36		
P/N	15EDGRC-3.5-03 фирмы DEGSON		
	Вывод	Описание	
	1	RX	
Назначение выводов	2	TX	
	3	GND	

Разъем RS232 управление

Функция	Разъем RS232 управление		
Позиционное обозначение	X37		
P/N	15EDGRC-3.5-03 фирмы DEGSON		
Назначение выводов	Вывод	Описание	
	1	CTS	
	2	RTS	
	3	GND	

RS-485/RS-422

Опциональные перемычки RS-485 / RS422

Использование согласующих резисторов

Для подавления отражения на конце линии рекомендуется добавить нагрузочные резисторы между парами сигналов на обоих концах кабеля.

Плата nms-q7-evm имеет встроенные согласующие резисторы, которые можно включить с помощью перемычек, поэтому, если устройство установлено на одном из концов кабеля, установите перемычки в требуемое положение.

Использование согласующих резисторов RS-485/RS422

	X34	X35
Включить нагрузочные резисторы в линию	Установить	Установить
Не включать нагрузочные резисторы в линию	Не устанавливать	Не устанавливать

При добавлении согласования в линию следует использовать не более двух резисторов, по одному на каждом конце линии.

Выбор способа управления для приемника и передатчика

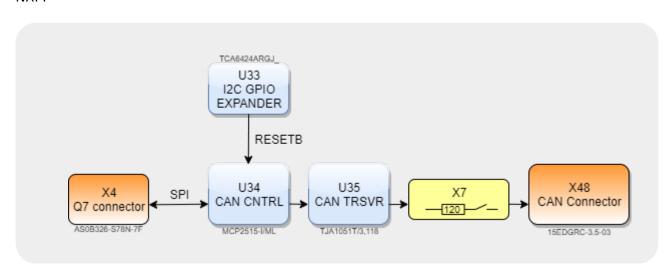
Выбор способа управления для приемника и передатчика ADM3491

Позиция джампера X49	Режим RS422 / RS485		
Установлено	Использование внешнего сигнала DE для управления драйвером / приемником ADM3491.		

Позиция джампера X49	Режим RS422 / RS485		
HO ACTAROBIERO	Использование внешнего сигнала DE для управления драйвером ADM3491 и сигнала RE_N для управления приемником ADM3491.		

Разъем RS485 данные 1

Функция	Разъем RS485 данные 1		
Позиционное обозначение	X40		
P/N	15EDGRC-3.5-03 фирмы DEGSON		
January 2012	Вывод	Описание	
	1	A	
Назначение выводов	2	В	
	3	GND	


Разъем RS485 данные 2

Функция	Разъем RS485 данные 2		
Позиционное обозначение	X41		
P/N	15EDGRC-3.5-03 фирмы DEGSON		
	Вывод	Описание	
Назначение выводов	1	Z	
	2	Υ	
	3	GND	

CAN

СА порт 0

Для подключения CAN интерфейса от модуля Qseven (X4) к внешней шине CAN на материнской плате предусмотрен приемопередатчик шины CAN TJA1051T / 3,118 фирмы NXP.

Блок-схема CAN интерфейса

Разъем CAN порт 0

Функция	Разъем CAN порт 0

http://wiki.inmys.ru/ 35 Printed on 2025/12/04 05:35

Позиционное обозначение	X23		
P/N	15EDGRC-3.5-03 фирмы DEGSON		
	Вывод	Описание	
Haarrarian principal	1	CANH_0	
Назначение выводов	2	GND	
	3	CANL_0	

Подключение к шине CAN осуществляется через съемную клеммную колодку 15EDGRC-3.5-03 фирмы Degson. Резистор 120 Ом размещается для завершения линии, в случае, если система находится на одном из двух концов CAN-линии. Перемычка X22 включает или отключает завершение шины CAN.

Использование терминирующего резистора CAN линии

Позиция джампера X22	Конфигурация
ACTAROBIEDO	На линии больше нет устройств. Используется нагрузочный резистор 120 Ом на конце шины.
Не установлено	На линии есть другие устройства или согласующий резистор.

СА Порт 1

Для подключения модуля Qseven (разъем Qseven X4) к внешней шине CAN на плате nms-q7-evm установлены контроллер CAN MCP2515-I / ML фирмы MICROCHIP (взаимодействие по интерфейсу SPI) и трансивер TJA1051T / 3,118 фирмы NXP.

CAN разъем порт 1

6.0 - 6.1				
Функция	Разъем CAN порт 1			
Позиционное обозначени	e X48	X48		
P/N	15EDGRC-3.5	15EDGRC-3.5-03 фирмы DEGSON		
	Вывод	Описание		
	1	CANH_1		
Назначение выводов	2	GND		
	3	CANL_1		

Подключение к шине CAN осуществляется через съемную клеммную колодку 15EDGRC-3.5-03 фирмы Degson.

Ecли nms-q7-evm находится в конце CAN-линии, то устанавливается терминирующий резистор 120 Ом.

Перемычка X7 позволяет включать или отключать завершение шины CAN.

Опции перемычки

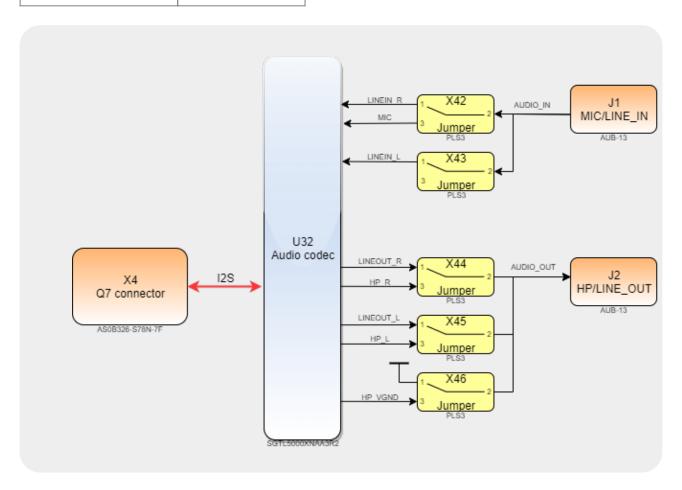
Опциональный джампер CAN шины

Положение перемычки	Конфигурация
IVCTAR DELIA	На линии больше нет устройств. Используется терминирующий
	резистор 120 Ом на конце шины.

Printed on 2025/12/04 05:35 36 http://wiki.inmys.ru/

Положение перемычки	Конфигурация
Не установлена	На линии есть другие устройства или терминирующий
пе установлена	резистор.

Аудио


Плата nms-q7-evm предоставляет один интерфейс Inter-IC Sound (I2S) для связи со звуковым кодеком SGTL5000XNAA3R2 фирмы NXP. Доступны 1 микрофонный вход или линейный вход (MP3 / FM), 1 выход на наушники или линейный выход (усилитель громкоговорителя / док-станция / FMTX).

На плате предусмотрено два аудиоразъема для входа и выхода.

Пять перемычек используются для переключения альтернативных входов и выходов.

Наглядный вид переключения джампера

Trai Migribin brig riepero	no termin Amarinepo
Позиция джампера	Наглядный вид
	1 3
1-2	
	1 3
2-3	

http://wiki.inmys.ru/ 37 Printed on 2025/12/04 05:35

Блок-схема Аудио интерфейса

Перемычки для выбора линии и опций

Перемычки для выбора линии и опций

Джампер	Линия LINE_IN	Микрофон
X42	1-2	2-3
X43	1-2	2-3

Джампер	Линия LINE_OUT	Наушники
X44	1-2	2-3
X45	1-2	2-3
X46	1-2	2-3

Ethernet

На плате nms-q7-evm поддержки Gigabit Ethernet установлены разъемы RJ45 TRJG16464ADNL фирмы TRXCOM (X9, X10) со встроенными трансформаторами и светодиодными индикаторами.

Ethernet порт 0

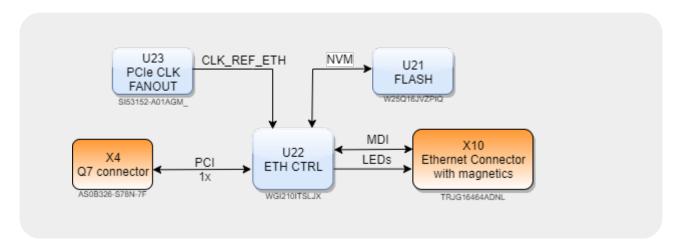
Разъем Гигабит Ethernet порт 0

-				
Функция	Разъем Гиг	Разъем Гигабит Ethernet порт 0		
Позиционное обозначени	X 9			
P/N	TRJG16464	TRJG16464ADNL фирмы TRXCOM		
	Вывод	Описание	Xa	
	1	GBE0_MDI0_P	EXCOMO D	
	2	GBE0_MDI0_N	1016464ADNL	
	3	GBE0_MDI1_P	cALus .	
Назначение выводов	4	GBE0_MDI2_P	A	
	5	GBE0_MDI2_N	h y	
	6	GBE0_MDI1_N		
	7	GBE0_MDI3_P		
	8	GBE0_MDI3_N		

Работа Ethernet светодиодов

Действие	Описание
•	Индикатор связи Ethernet контроллера, напрямую подключен к модулю QSeven.
	Индикатор активности Ethernet контроллера, напрямую подключен к модулю QSeven.

Ethernet порт 1


Ethernet контроллер WGI210ITSLJX фирмы INTEL использует интерфейс PCIe, который поддерживает только скорость PCIe v2.1 (2.5GT/s) и настроен на x1. Для связи между контроллером на модуле QSeven и WGI210 используется интерфейс SMBus (более подробную информацию см. в разделе I2C).

WGI210 использует внешний последовательный интерфейс SPI для связи с флэшпамятью W25Q16JVZPIQ (U21),в которой хранится информации о конфигурации продукта или загрузочная программа.

WGI210 (U22) использует дифференциальную опорную частоту 100 МГц, которая генерируется в тактовом буфере PCI-express U23 (SI53152-A01AGM) фирмы Silicon Labs.

В WGI210 имеется три вывода для светодиодов, которые подключены к разъему X10 (TRJG16464ADNL фирмы TRXCOM) и используются для индикации разных состояний трафика.

Блок-схема Ethernet порт 1

Разъем Гигабит Ethernet порт 1

Функция	Разъем Гига	абит Ethernet по
Позиционное обозначение	X10	2 - 2 NO E
P/N	TRJG16464A	DNL фирмы TRXCOM
	Вывод	Описание
	1	GBE1_MDI0_P
	2	GBE1_MDI0_N
	3	GBE1_MDI1_P
Назначение выводов	4	GBE1_MDI2_P
	5	GBE1_MDI2_N
	6	GBE1_MDI1_N
	7	GBE1_MDI3_P
	8	GBE1_MDI3_N

M.2 PCle

На плате nms-q7-evm установлен один разъем PCI Express формата M.2 (X1), который обеспечивает возможность подсоединения различных сменных карт PCI Express Mini. Используется 0 канал PCI Express.

PCIE слот

Функция	PCIE слот		
Позиционное обозначение	X1		
P/N	MDT420M02001 фирмы AMPHENOL		

http://wiki.inmys.ru/ 39 Printed on 2025/12/04 05:35

	Вывод	Описание	Вывод	Описание
	1	GND	36	NC
	2	3V3_SSD_SATA	37	NC
	3	GND	38	DEV_SLEEP_DATA
	4	3V3_SSD_SATA	39	GND
	5	NC	40	NC
	6	NC	41	SATA_B_P
	7	NC	42	NC
	8	NC	43	SATA_B_N
	9	GND	44	NC
	10	M2_LED_SATA	45	GND
	11	NC	46	NC
	12	3V3_SSD_SATA	47	SATA_A_N
	13	NC	48	NC
	14	3V3_SSD_SATA	49	SATA_A_P
	15	GND	50	NC
	16	3V3_SSD_SATA	51	GND
Назначение выводов	17	NC	52	NC
пазначение выводов	18	3V3_SSD_SATA	53	NC
	19	NC	54	NC
	20	NC	55	NC
	21	GND	56	NC
	22	NC	57	GND
	23	NC	58	NC
	24	NC	67	NC
	25	NC	68	NC
	26	NC	69	PEDET_SATA
	27	GND	70	3V3_SSD_SATA
	28	NC	71	GND
	29	NC	72	3V3_SSD_SATA
	30	NC	73	GND
	31	NC	74	3V3_SSD_SATA
	32	NC	75	GND
	33	GND	76	S (GND)
	34	NC	77	S (GND)
	35	NC		

M.2 SATA

На плате nms-q7-evm установлен один разъем SATA формата М.2 (X2).

SATA слот

Функция	SATA слот
Позиционное обозначение	X2
P/N	MDT420M02001 фирмы AMPHENOL

	Вывод	Описание	Вывод	Описание
	1	GND	36	NC
	2	3V3_SSD_PCIE	37	NC
	3	GND	38	DEV_SLEEP_PCIE
	4	3V3_SSD_PCIE	39	GND
	5	NC	40	NC
	6	NC	41	SATA_B_P
	7	NC	42	NC
	8	NC	43	SATA_B_N
	9	GND	44	NC
	10	M2_LED_PCIE	45	GND
	11	NC	46	NC
	12	3V3_SSD_PCIE	47	SATA_A_N
	13	NC	48	NC
	14	3V3_SSD_PCIE	49	SATA_A_P
	15	GND	50	PERST#
	16	3V3_SSD_PCIE	51	GND
U	17	NC	52	NC
Назначение выводов	18	3V3_SSD_PCIE	53	NC
	19	NC	54	NC
	20	NC	55	NC
	21	GND	56	NC
	22	NC	57	GND
	23	NC	58	NC
	24	NC	67	NC
	25	NC	68	NC
	26	NC	69	PEDET_PCIE
	27	GND	70	3V3_SSD_PCIE
	28	NC	71	GND
	29	NC	72	3V3_SSD_PCIE
	30	NC	73	GND
	31	NC	74	3V3_SSD_PCIE
	32	NC	75	GND
	33	GND	76	S (GND)
	34	NC	77	S (GND)
	35	NC		

SD карта

На плате nms-q7-evm установлен один разъем SD / MMC (X3).

Слот для SD-карты можно настроить для работы с SD или MMC, поддерживается 4битная параллельная передача данных и могут поддерживаться карты SDIO, предназначенные для установки в microSD слот.

SD Card слот

Функция	SD Card слот		
Позиционное обозначение	X3		
P/N	DM3AT-SF-PEJM5 фирмы HIROSE		
	Вывод	Описание	
	1	DAT2	
	2	CD/DAT3	
	3	CMD	
	4	VDD	
Назначение выводов	5	CLK	
	6	VSS	
	7	DAT0	
	8	DAT1	
	9	CD_A	
	10	CD_B	

Специальный разъем

Специальный разъем

Функция	Функци	ональный разъем		
Позиционное обозначение	X14			
P/N	DM3AT-	SF-PEJM5 фирмы HIROSE		
	Вывод	Описание		
	1	3V3		
	2	GND		
	3	FAN_T_IN		
	4	GND		
Назначение выводов	5	GPO0(SUS_STAT#)		
	6	GND		
	7	FAN_OUT/GP_PWM_OUT1		
	8	GND		
	9	SPKR/GP_PWM_OUT2		
	10	GND		

Разъем вентилятора

Плата nms-q7-evm предоставляет возможность подключения охлаждающих 4-контактных вентиляторов (питание 3.3 В) для модуля CPU и системы с помощью разъема X14.

Вход тахометра вентилятора (Сигнал FAN_TACHOIN) подключается напрямую к модулю QSeven.

Разъемы отладки и программирования

Плата nms-q7-evm предоставляет специальные разъемы для отладки и программирования.

JTAG/UART

На плате nms-q7-evm предусмотрен штыревой 10-контактный разъем X7 для отладки с помощью USB (UART) или JTAG. Оба интерфейса отладки используют одни и те же сигналы от разъема QSeven (X4) (для выбора используется строка выбора MFG NCN4 MUX).

Используемый для отладки UART не полнофункциональный и поддерживает только последовательные сигналы TX и RX.

Для выбора портов отладки на плате предусмотрена перемычка X25. По умолчанию она находится находится в положении «UART».

Разъем для отладки

	aa za H a aH								
Функция	Разъем	Разъем для отладки							
Позиционное обозначение	e X7								
P/N	PLD-10	PLD-10							
	Вывод	од Описание Вывод Описание							
	1	JTAG_TCK	6	NC					
U	2	GND	7	NC					
Назначение выводов	3	JTAG_TDO/UART_TX	8	NC					
	4	3V3	9	JTAG_TDI/UART_RX					
	5	JTAG_TMS/BOOT	10	GND					

Джампер выбора портов отладки X25 (JTAG/UART)

Джампер выбора портов отладки (JTAG/UART)

Позиция джампера Х25	Конфигурация			
Установлен	Выбор UART для отладки.			
Не установлен	Выбор JTAG для отладки.			

Программирование и отладка микроконтроллера

Разъем X21 позволяет подключать инструменты отладки или программирования для микроконтроллера (MCU) STM8S208C8T6 (U18) фирмы STMicroelectronics.

Разъем для программирования/отладки микроконтроллера

Функция	Разъем для прогр	Разъем для программирования/отладки микроконтроллера				
Позиционное обозначение Х21						
P/N	WF-4 фирмы ТАВ					
	Вывод	Описание				
	1	3V3_WD				
Назначение выводов	2	SWIM				
	3	GND				
	4	NRST				

http://wiki.inmys.ru/ 43 Printed on 2025/12/04 05:35

Джамперы и Кнопки

Джамперы

На плате nms-q7-evm предусмотрена возможность настройки в соответствии с потребностями пользователя с помощью перемычек.

Расположение джамперов и кнопок на плате Q7Base **Выбор способа загрузки BIOS**

Джампер X6 используется для выбора между использованием стандартной загрузочной прошивки или включения альтернативного источника загрузки прошивки, например, загрузчик Boot loader.

Выбор способа загрузки BIOS

Позиция джампера X6	Конфигурация
Установлен	Отключение встроенного модуля Bios на модуле QSeven (загрузка из внешнего источника через плату nms-q7-evm).
Не установлен	Включение встроенного модуля Bios на модуле QSeven (загрузка BIOS из CPU модуля QSeven).

По умолчанию используется стандартная загрузочная прошивка.

Кнопки

На плате nms-q7-evm используются кнопки без фиксации FSM4JH фирмы TECONN.

Кнопка включения питания SW1

При нажитии этой кнопки плата nms-q7-evm выполняет последовательность включения питания. Кнопка питания подключена к сигналу PWRBTN# модуля QSeven.

Кнопка сброса SW2

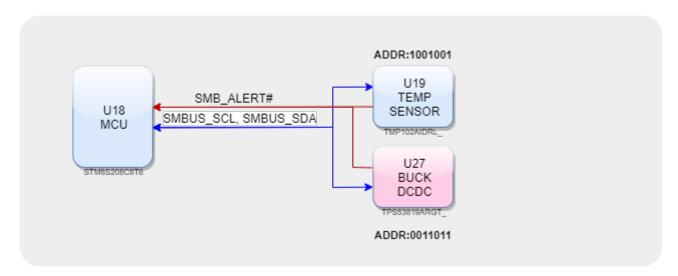
При нажитии этой кнопки происходит полный сброс модуля QSeven и компонентов, подключенных к плате. Кнопка сброса подключена к сигналу RSTBTN# модуля QSeven.

Встроенные устройства

Элемент питания В1

Ha плате nms-q7-evm установлена перезаряжаемая литиевая батарейка (smd) ML-1220/F1AN фирмы PANASONIC, которая подает питание на RTC и память модуля

QSeven. Аккумулятор обеспечивает питание 3 Вольта. Предусмотрена возможность отключить питание, отпаяв резистор R100 (0 Ом).


Элемент питания 3 Вольта

Функция	Питание VRT0	2			
Позиционное обозначени	B1				
P/N	ML-1220/F1AN	ML-1220/F1AN фирмы PANASONIC			
	Вывод	Описание			
Назначение выводов	1	GND			
	2	BAT_OUT			

Микроконтроллер

На плате nms-q7-evm установлен 8-разрядный микроконтроллер STM8S208C8T6 (U18) фирмы ST Microelectronics с программной Flash памятью 64 Кбайт, который предназначен для обнаружения ошибок, вызванных внешними помехами, используется для устранения неисправностей процессора из-за аппаратных или программных сбоев (сторожевой таймер).

Микроконтроллер использует шину I2C для связи с датчиком температуры TMP102AIDRL_ (U19) фирмы Texas Instruments и DCDC преобразователем TPS53819 (U27) фирмы Texas Instruments.

Подключение микроконтроллера STM8

Однопроводный интерфейс (SWIM) обеспечивает непрерывную отладку в режиме реального времени и быстрое программирование памяти.

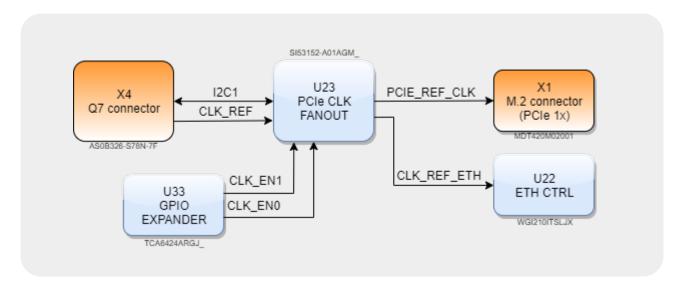
Датчик температуры

На плате nms-q7-evm установлен цифровой датчик температуры TMP102AIDRL (U19) фирмы Texas Instruments, который имеет совместимость с SMBus.

TMP102 использует шину I2C для передачи температуры на STM8 (U18) и работает от питания 3.3 В.

http://wiki.inmys.ru/ 45 Printed on 2025/12/04 05:35

TMP102 способен считывать температуру с разрешающей способностью 0,0625 ° C (встроенный 12-разрядный АЦП) и с точностью до 0,5 ° C.


Адрес по умолчанию: 0х49 (1001001).

Буфер синхронизации РСІе

На плате nms-q7-evm установлен тактовый буфер PCIe SI53152-A01AGM_ (U23) фирмы Silicon Labs с расширенным спектром, который одновременно генерирует два тактовых сигнала PCIe (CLK0 и CLK1) и работает от питания 3.3 В.

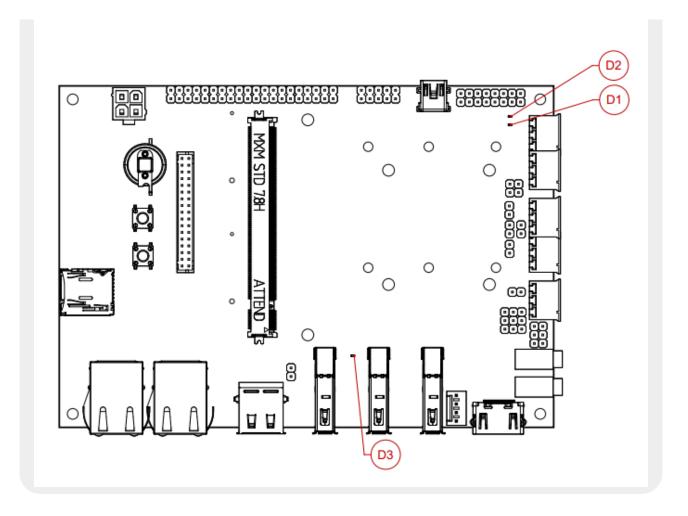
Устройство имеет два выхода разрешения (CLK_EN0, CLK_EN1) для включения соответствующих дифференциальных выходов «на лету».

Устройство также имеет функцию управления выходом через интерфейс I2C (модуль QSeven).

Буфер синхронизации РСІе

Расширитель GPIO

На плате nms-q7-evm установлен 24-битный расширитель ввода/вывода TCA6424ARGJ_ (U33) фирмы Texas Instruments, предназначенный для обеспечения расширения удаленного ввода/вывода для двухлинейной двунаправленной шины (I2C).


Адрес по умолчанию - 0100011.

информация о состоянии

Светодиоды

На плате nms-q7-evm установлены три зеленых светодиода LNJ347W83RA фирмы PANASONIC (D1-D3).

Printed on 2025/12/04 05:35 46 http://wiki.inmys.ru/

Расположение светодиодов на плате nms-q7-evm **D1**

Светодиод D1 это программируемый пользовательский светодиод микроконтроллера STM8S208C8T6 (U18).

D2

Светодиод D2 указывает, что все питания, расположенные на плате, сконфигурированы и готовы к использованию.

D3

Светодиод D3 подключается к пользовательскому выводу на модуле QSeven и используется как GPIO.

http://wiki.inmys.ru/ 47 Printed on 2025/12/04 05:35

Приложение

Приложение 1

Вывод	Описание	Группа	Тип	Примечание	Вывод	Описание	Группа	Тип	Примечание
	(верхний ряд)	сигналов				(нижний ряд)	сигналов		
1	GND		Питание		2	GND		Питание	
3	GBE_MDI3-	GBE	Вход/Выход		4	GBE_MDI2-	GBE	Вход/Выход	
5	GBE_MDI3+	GBE	Вход/Выход		6	GBE_MDI2+	GBE	Вход/Выход	
7	GBE_LINK100#	GBE	Вход	Не подключен	8	GBE_LINK1000#	GBE	Вход	Не подключен
9	GBE_MDI1-	GBE	Вход/Выход		10 12	GBE_MDIO-	GBE GBE	Вход/Выход	
11 13	GBE_MDI1+	GBE	Вход/Выход		14	GBE_MDI0+ GBE ACT#	GBE	Вход/Выход Вход	
15	GBE_LINK# GBE_CTREF	GBE	Вход Вход	Не подключен	16	SUS S5#	PWR MGMT		Не подключен
	_			Подтягивающий		_	_		пе подключен
17	WAKE#	PWR_MGMT		резистор	18	SUS_S3#	PWR_MGMT		Не подключен Подтягивающий
19	GPO0(SUS_STAT#)	PWR_MGMT		Подтягивающий	20	PWRBTN#	PWR_MGMT		резистор Подтягивающий
21	SLP_BTN#/GPII1 GND	PWR_MGMT	Питание	резистор	22 24	LID_BTN#/GPII0 GND	PWR_MGMT	Питание	резистор
	KEY					KEY			
25	GND		Питание		26	PWGIN	PWR_MGMT	Выход	Стягивающий резистор
27	BATLOW#/GPII2	PWR_MGMT	Выход	Подтягивающий резистор	28	RSTBTN#	PWR_MGMT	Выход	Подтягивающий резистор
29	SATA0_TX+	SATA	Вход		30	SATA1_TX+	SATA	Вход	Не подключен
31	SATA0_TX-	SATA	Вход		32	SATA1_TX-	SATA	Вход	Не подключен
33	SATA_ACT#	SATA	Вход	Не подключен	34	GND		Питание	
35	SATA0_RX+	SATA	Выход		36	SATA1_RX+	SATA	Выход	Не подключен
37	SATA0_RX-	SATA	Выход		38	SATA1_RX-	SATA	Выход	Не подключен
39	GND		Питание		40	GND		Питание	
	BIOS_DIS#/BOOT_ALT#	воот	Выход	Подтягивающий резистор	42	SDIO_CLK#	SDIO	Вход	
43	SDIO_CD#	SDIO	Вход/Выход		44	reserved (SDIO_LED)			
45	SDIO_CMD	SDIO	Вход/Выход		46	SDIO_WP	SDIO	Вход/Выход	Стягивающий резистор
47	SDIO_PWR#	SDIO	Вход	Не подключен	48	SDIO_DAT1	SDIO	Вход/выход	
49	SDIO_DAT0	SDIO	Вход/Выход		50	SDIO_DAT3	SDIO	Вход/Выход	
51	SDIO_DAT2	SDIO	Вход/Выход		52	reserved (SDIO_DAT5)			
53	reserved (SDIO_DAT4)				54	reserved (SDIO_DAT7)			
55 57	reserved (SDIO_DAT6)		П.,,,,,,,,,		56	USB_OTG_PEN (RSVD)	USB	Вход	Не подключен
59	GND	AUDIO	Питание		58 60	GND SMB CLK/GP1 I2C CLK	MISC	Питание Вход/Выход	
61	HDA_SYNC/I2S_WS HDA_RST#/I2S_RST#	AUDIO	Вход Вход		62	SMB_CLK/GP1_I2C_CLK	MISC	Вход/Выход	
63	HDA_RST#/I2S_RST#	AUDIO	Вход		64	SMB ALERT#	MISC	Вход/Выход	
65	HDA SDI/I2S SDI	AUDIO	Выход		66	GPO I2C CLK (I2C CLK)	MISC	Вход/Выход	
67	HDA SDO/I2S SDO	AUDIO	Вход		68	GP0 I2C DAT (I2C DAT)	MISC	Вход/Выход	
69	THRM#	MISC	Выход	Подтягивающий резистор		WDTRIG#	MISC	Выход	Подтягивающий резистор
71	THRMTRIP#	MISC	Вход	- - - - - - -	72	WDOUT	MISC	Вход	
73	GND		Питание		74	GND		Питание	
75	USB_P7-/USB_SSTX0-	USB	Вход/Выход		76	USB_P6-/USB_SSRX0-	USB	Вход/Выход	
77	USB_P7+/USB_SSTX0+	USB	Вход/Выход		78	USB_P6+/USB_SSRX0+	USB	Вход/Выход	
79	USB_6_7_OC#	USB	Выход		80	USB_4_5_OC#	USB	Выход	
81	USB_P5-/USB_SSTX2-	USB	Вход/Выход		82	USB_P4-/USB_SSRX2-	USB	Вход/Выход	
83	USB_P5+/USB_SSTX2+	USB	Вход/Выход		84	USB_P4+/USB_SSRX2+	USB	Вход/Выход	
85	USB_2_3_OC#	USB	Выход		86	USB_0_1_OC#	USB	Выход	
87	USB_P3-	USB	Вход/Выход		88	USB_P2-	USB	Вход/Выход	
89 91	USB_P3+ USB_VBUS (USB_CC)	USB	Вход/Выход Выход	Подтягивающий	90 92	USB_P2+ USB ID	USB	Вход/Выход Выход	Стягивающий
93	USB P1-	USB	Вход/Выход	резистор	94	USB P0-	USB	Вход/Выход	резистор
95	USB P1+	USB	Вход/Выход	-	96	USB P0+	USB	Вход/Выход	
97	GND	1002	Питание		98	GND		Питание	
99	eDP0 TX0+/LVDS A0+	LVDS/eDP	Вход		100	eDP1 TX0+/LVDS B0+	LVDS/eDP	Вход	
101	eDP0_TX0-/LVDS_A0-	LVDS/eDP	Вход		102	eDP1_TX0-/LVDS_B0-	LVDS/eDP	Вход	
103	eDP0_TX1+/LVDS_A1+	LVDS/eDP	Вход		104	eDP1_TX1+/LVDS_B1+	LVDS/eDP	Вход	
105	eDP0_TX1-/LVDS_A1-	LVDS/eDP	Вход		106	eDP1_TX1-/LVDS_B1-	LVDS/eDP	Вход	
107	eDP0_TX2+/LVDS_A2+	LVDS/eDP	Вход		108	eDP1_TX2+/LVDS_B2+	LVDS/eDP	Вход	
109	eDP0_TX2-/LVDS_A2-	LVDS/eDP	Вход		110	eDP1_TX2-/LVDS_B2-	LVDS/eDP	Вход	
111	LVDS_PPEN	LVDS/eDP	Вход		112	LVDS_BLEN	LVDS/eDP	Вход	
113	eDP0_TX3+/LVDS_A3+	LVDS/eDP	Вход		114	eDP1_TX3+/LVDS_B3+	LVDS/eDP	Вход	
115	eDP0_TX3-/LVDS_A3-	LVDS/eDP	Вход		116	eDP1_TX3-/LVDS_B3-	LVDS/eDP	Вход	
117	GND		Питание		118	GND		Питание	

	Описание	Группа				Описание	Группа		
Вывод	(верхний ряд)	сигналов	Тип	Примечание	Вывод	(нижний ряд)	сигналов	Тип	Примечание
119	eDP0_AUX+/LVDS_A_CLK+	LVDS	Вход		120	eDP1_AUX+/LVDS_B_CLK+	LVDS	Вход/Выход	
121	eDP0_AUX-/LVDS_A_CLK-	LVDS	Вход		122	eDP1_AUX-/LVDS_B_CLK-	LVDS	Вход/Выход	
123	LVDS_BLT_CTRL/ GP_PWM_OUT0	LVDS/eDP	Вход		124	GP_1-Wire_Bus/ HDMI_CEC (RSVD)	HDMI/DP	Вход/Выход	
125	LVDS_DID_DAT/GP_I2C_DAT	LVDS	Вход/Выход		126	eDP0_HPD#/LVDS_BLC_DAT	LVDS	Вход/Выход	
127	LVDS_DID_CLK/GP_I2C_CLK	LVDS	Вход/Выход		128	eDP1_HPD#/LVDS_BLC_CLK	LVDS	Вход/Выход	
129	CAN0_TX	CAN	Вход		130	CAN0_RX	CAN	Выход	
131	DP_LANE3+/TMDS_CLK+ (SDVO_BCLK+)	HDMI/DP	Вход		132	USB_SSTX1- (SDVO_INT+)	USB	Вход	
133	DP_LANE3-/TMDS_CLK- (SDVO_BCLK-)	HDMI/DP	Вход		134	USB_SSTX1+ (SDVO_INT-)		Вход	
135	GND		Питание		136	GND		Питание	
137	DP_LANE1+/TMDS_LANE1+ (SDVO_GREEN+)	HDMI/DP	Вход		138	DP_AUX+ (SDVO_FLDSTALL+)	DP	Вход/Выход	Не подключен
139	DP_LANE1-/TMDS_LANE1- (SDVO_GREEN-)	HDMI/DP	Вход		140	DP_AUX- (SDVO_FLDSTALL-)	DP	Вход/Выход	Не подключен
141	GND		Питание		142	GND		Питание	
143	DP_LANE2+/TMDS_LANE0+ (SDVO_BLUE+)	HDMI/DP	Вход		144	USB_SSRX1- (SDVO_TVCLKIN+)	USB	Выход	
145	DP_LANE2-/TMDS_LANE0- (SDVO_BLUE-)	HDMI/DP	Вход		146	USB_SSRX1+ (SDVO TVCLKIN-)	USB	Выход	
147	GND		Питание		148	GND		Питание	
149	DP_LANE0+/TMDS_LANE2+ (SDVO_RED+)	HDMI/DP	Вход		150	HDMI_CTRL_DAT (SDVO_CTRL_DAT)	HDMI/DP	Вход/Выход	
151	DP_LANE0-/TMDS_LANE2- (SDVO_RED-)	HDMI/DP	Вход		152	HDMI_CTRL_CLK (SDVO_CTRL_CLK)	HDMI/DP	Вход/Выход	
153	HDMI_HPD#	HDMI/DP	Выход	Подтягивающий резистор	154	DP_HPD#	DP	Выход	Не подключен
155	PCIE_CLK_REF+	PCI-E	Вход		156	PCIE_WAKE#	PCI-E	Выход	
157	PCIE_CLK_REF-	PCI-E	Вход		158	PCIE_RST#	PCI-E	Вход	
159	GND		Питание		160	GND		Питание	
161	PCIE3_TX+	PCI-E	Вход	Не подключен	162	PCIE3_RX+	PCI-E	Выход	Не подключен
163	PCIE3_TX-	PCI-E	Вход	Не подключен	164	PCIE3_RX-	PCI-E	Выход	Не подключен
165	GND		Питание		166	GND		Питание	
167	PCIE2_TX+	PCI-E	Вход	Не подключен	168	PCIE2_RX+	PCI-E	Выход	Не подключен
169	PCIE2_TX-	PCI-E	Вход	Не подключен	170	PCIE2_RX-	PCI-E	Выход	Не подключен
171	UARTO_TX (EXCDO_PERST#)	UART	Вход		172	UARTO_RTS# (EXCD1_PERST#)	UART	Вход	
173	PCIE1_TX+	PCI-E	Вход		174	PCIE1_RX+	PCI-E	Выход	
175	PCIE1_TX-	PCI-E	Вход		176	PCIE1_RX-	PCI-E	Выход	
177	UARTO_RX (EXCDO_CPPE#)	UART	Выход		178	UARTO_CTS# (EXCD1_CPPE#)	UART	Выход	
179	PCIE0_TX+	PCI-E	Вход		180	PCIE0_RX+	PCI-E	Выход	
181	PCIE0_TX-	PCI-E	Вход		182	PCIE0_RX-	PCI-E	Выход	
183	GND		Питание		184	GND		Питание	
185	LPC_AD0/GPI00	LPC	Вход/Выход		186	LPC_AD1/GPIO1	LPC	Вход/Выход	
187 189	LPC_AD2/GPIO2 LPC_CLK/GPIO4	LPC LPC	Вход/Выход Вход/Выход		188 190	LPC_AD3/GPIO3 LPC_FRAME#/GPIO5	LPC LPC	Вход/Выход Вход/Выход	
191	SERIRQ/GPIO6	LPC	Вход/Выход		190	LPC_FRAME#/GPIO3	LPC	Вход/Выход	
191	VCC RTC	LIC	Выход		194	SPKR/GP PWM OUT2	Li C	Вход/выход	
195	FAN_T_IN/GP_TIMER_IN	MISC	Выход		196	FAN OUT/GP PWM OUT1	MISC	Вход	
197	GND		Питание		198	GND		Питание	
199	SPI MOSI	SPI	Вход		200	SPI CS0#	SPI	Вход	
201	SPI MISO	SPI	Выход		202	SPI CS1#	SPI	Вход	
203	SPI_SCK	SPI	Вход		204	MFG_NC4		Выход	
205	VCC_5V_SB		Выход		206	VCC_5V_SB		Выход	
207	MFG_NC0	MFG	Выход		208	MFG_NC2	MFG	Выход	
209	MFG_NC1	MFG	Вход		210	MFG_NC3	MFG	Выход	
211	NC (VCC)				212	NC (VCC)			
213	NC (VCC)				214	NC (VCC)			
215	NC (VCC)				216	NC (VCC)			
217	NC (VCC)				218	NC (VCC)			
219	VCC		Выход		220	VCC		Выход	
221	VCC		Выход		222	VCC		Выход	
223	VCC		Выход		224	VCC		Выход	
225	VCC		Выход		226	VCC		Выход	
227	VCC		Выход		228	VCC		Выход	
229	VCC		Выход		230	VCC		Выход	